Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Inherit Metab Dis ; 40(4): 601-607, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28593466

RESUMEN

Per definition, rare diseases affect only a small number of subjects within a given population. Taken together however, they represent a considerable medical burden, which remains poorly addressed in terms of treatment. Compared to other diseases, obstacles to the development of therapies for rare diseases include less extensive physiopathology knowledge, limited number of patients to test treatments, and poor commercial interest from the industry. Recently, advances in high-throughput and high-content screening (HTS and HCS) have been fostered by the development of specific routines that use robot- and computer-assisted technologies to automatize tasks, allowing screening of a large number of compounds in a short period of time, using experimental model of diseases. These approaches are particularly relevant for drug repositioning in rare disease, which restricts the search to compounds that have already been tested in humans, thereby reducing the need for extensive preclinical tests. In the future, these same tools, combined with computational modeling and artificial neural network analyses, may also be used to predict individual clinical responses to drugs in a personalized medicine approach.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Enfermedades Raras/tratamiento farmacológico , Animales , Automatización , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Microscopía , Fenotipo , Control de Calidad , Programas Informáticos , Tecnología Farmacéutica
2.
Nat Commun ; 10(1): 5630, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822666

RESUMEN

The lysosomal calcium channel TRPML1, whose mutations cause the lysosomal storage disorder (LSD) mucolipidosis type IV (MLIV), contributes to upregulate autophagic genes by inducing the nuclear translocation of the transcription factor EB (TFEB). Here we show that TRPML1 activation also induces autophagic vesicle (AV) biogenesis through the generation of phosphatidylinositol 3-phosphate (PI3P) and the recruitment of essential PI3P-binding proteins to the nascent phagophore in a TFEB-independent manner. Thus, TRPML1 activation of phagophore formation requires the calcium-dependent kinase CaMKKß and AMPK, which increase the activation of ULK1 and VPS34 autophagic protein complexes. Consistently, cells from MLIV patients show a reduced recruitment of PI3P-binding proteins to the phagophore during autophagy induction, suggesting that altered AV biogenesis is part of the pathological features of this disease. Together, we show that TRPML1 is a multistep regulator of autophagy that may be targeted for therapeutic purposes to treat LSDs and other autophagic disorders.


Asunto(s)
Autofagosomas/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Lisosomas/metabolismo , Transducción de Señal , Canales de Potencial de Receptor Transitorio/metabolismo , Autofagosomas/ultraestructura , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Beclina-1/metabolismo , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Mucolipidosis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación , Fosfoserina/metabolismo , Canales de Potencial de Receptor Transitorio/agonistas
3.
Methods Enzymol ; 588: 61-78, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28237119

RESUMEN

Macroautophagy is a catabolic process deputed to the turnover of intracellular components. Recent studies have revealed that transcriptional regulation is a major mechanism controlling autophagy. Currently, more than 20 transcription factors have been shown to modulate cellular autophagy levels. Among them, the transcription factor EB (TFEB) appears to have the broadest proautophagy role, given its capacity to control the biogenesis of lysosomes and autophagosomes, the two main organelles required for the autophagy pathway. TFEB has attracted major attention owing to its ability to enhance cellular clearance of pathogenic substrates in a variety of animal models of disease, such as lysosomal storage disorders, Parkinson's, Alzheimer's, α1-antitrypsin, obesity as well as others, suggesting that the TFEB pathway represents an extraordinary possibility for future development of innovative therapies. Importantly, the subcellular localization and activity of TFEB are regulated by its phosphorylation status, suggesting that TFEB activity can be pharmacologically targeted. Given the growing list of common and rare diseases in which manipulation of autophagy may be beneficial, in this chapter we describe a set of validated protocols developed to modulate and analyze TFEB-mediated enhancement of autophagy both in vitro and in vivo conditions.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/análisis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Immunoblotting/métodos , Lisosomas/genética , Lisosomas/metabolismo , Ratones , Imagen Óptica/métodos , Fosforilación , Regiones Promotoras Genéticas , ARN Mensajero/análisis , ARN Mensajero/genética , Coloración y Etiquetado/métodos , Fijación del Tejido/métodos , Activación Transcripcional
4.
Endocrinology ; 140(1): 87-95, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9886811

RESUMEN

Using RT and amplification, we have detected specific RNA transcripts encoding somatostatin in FRTL-5 thyroid cells. This observation indicates that within the thyroid context, expression of somatostatin is not restricted to the parafollicular C cells. Transfection of FRTL-5 cells with constructs containing either the complete somatostatin gene promoter or deletions carrying the cAMP response element-binding site allowed us to demonstrate that transcription of the somatostatin gene is hormonally regulated by TSH. Blockage of somatostatin by specific antibodies resulted in an increased capacity of TSH-induced FRTL-5 cell-conditioned medium to promote cell proliferation, demonstrating that under physiological conditions, somatostatin exerts a cytostatic effect on FRTL-5 cells growth. Somatostatin treatment of FRTL-5 cells resulted in a growth retardation, caused by a dose-response delay in the G1 phase of the cell cycle. This effect appears to be mediated by the cyclin-dependent kinase inhibitor p27kip1, which is clearly down-regulated in FRTL-5 cells treated with TSH and whose expression is reestablished by somatostatin in a dose-dependent manner. Participation of somatostatin in the control of FRTL-5 cell proliferation is in agreement with the detection of specific somatostatin receptor type 2. Flow cytometric assays reveal that FRTL-5 cells transformed with the K-ras oncogene are still sensitive to somatostatin treatment, whereas fully neoplastic FRT cells no longer respond to this peptide. Taking together, the results demonstrate the participation of an autocrine loop in the control of thyroid cell proliferation, and the possibility that this mechanism could be altered in the process of thyroid carcinogenesis.


Asunto(s)
Proteínas de Ciclo Celular , Regulación hacia Abajo , Proteínas Asociadas a Microtúbulos/biosíntesis , Somatostatina/biosíntesis , Glándula Tiroides/metabolismo , Tirotropina/fisiología , Proteínas Supresoras de Tumor , Animales , División Celular , Separación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Citometría de Flujo , Fase G1 , Humanos , Regiones Promotoras Genéticas , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Espectrometría de Fluorescencia , Transcripción Genética , Transfección , Células Tumorales Cultivadas
5.
Endocrinology ; 141(1): 420-9, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10614665

RESUMEN

The MDM2 oncoprotein has been shown to inhibit p53-mediated growth arrest and apoptosis. It also confers growth advantage to different cell lines in the absence of p53. Recently, the ability of MDM2 to arrest the cell cycle of normal human fibroblasts has also been described. We report a novel function for this protein, showing that overexpression of MDM2 promotes apoptosis in p53-deficient, human medullary thyroid carcinoma cells. These cells, devoid of endogenous MDM2 protein, exhibited a significant growth retardation after stable transfection with mdm2. Cell cycle distribution of MDM2 transfectants [medullary thyroid tumor (MTT)-mdm2] revealed a fraction of the cell population in a hypodiploid status, suggesting that MDM2 is sufficient to promote apoptosis. This circumstance is further demonstrated by annexin V labeling. MDM2-induced apoptosis is partially reverted by transient transfection with p53 and p19ARF. Both MTT and MTT-mdm2 cells were tumorigenic when injected into nude mice. However, the percentage ofapoptotic nuclei in tumor sections derived from MDM2-expressing cells was significantly higher relative to that in the parental cell line. MDM2-mediated programmed cell death is at least mediated by a down-regulation of the antiapoptotic protein Bcl-2. Protein levels of caspase-2, which are undetectable in the parental cell line, appear clearly elevated in MTT-mdm2 cells. Caspase-3 activation does not participate in MDM2-induced apoptosis, as determined by protein levels or poly(ADP-ribose) polymerase fragmentation. The results observed in this medullary carcinoma cell line show for the first time that the product of the mdm2 oncogene mediates cell death by apoptosis in p53-deficient tumor cells.


Asunto(s)
Apoptosis/fisiología , Carcinoma Medular/patología , Genes p53/genética , Proteínas de Neoplasias/fisiología , Proteínas Nucleares , Proteínas Proto-Oncogénicas/fisiología , Neoplasias de la Tiroides/patología , Animales , Apoptosis/genética , Northern Blotting , Western Blotting , Carcinoma Medular/genética , Caspasa 2 , Caspasas/biosíntesis , División Celular/fisiología , Células Clonales , Citometría de Flujo , Humanos , Etiquetado Corte-Fin in Situ , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Plásmidos/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-mdm2 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de la Tiroides/genética , Transfección , Células Tumorales Cultivadas
6.
Eur J Endocrinol ; 143(2): 161-78, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10913934

RESUMEN

This review is focused on the most recent knowledge on growth control of rat thyroid cell lines. We analyzed the effect of mitogenic as well as inhibitory agents, but mainly the proliferative effect elicited by thyrotropin (TSH). The classic cAMP-dependent protein kinase (PKA) signal transduction pathway involved in TSH-mediated cell growth is analyzed exhaustively. We have also reviewed new concepts about the participation of other effectors such as small GTPases and phosphatidyl inositol-3-kinase (PI3-K) and the new data about the existence of a cAMP-dependent but PKA-independent pathway. Finally, we give information about TSH induction of cell cycle-related genes, such as G1 cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors.


Asunto(s)
División Celular/efectos de los fármacos , Glándula Tiroides/citología , Tirotropina/farmacología , Animales , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclinas/genética , GTP Fosfohidrolasas , Expresión Génica/efectos de los fármacos , Ratas , Transducción de Señal , Proteínas ras
7.
Thyroid ; 10(4): 295-303, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10807057

RESUMEN

Thyrotropin (TSH), via its cyclic adenosine monophosphate (cAMP) signal, decreases thyrotropin receptor (TSHR) gene expression in FRTL-5 thyroid cells, whereas it increases expression of the thyroglobulin (Tg) gene. Despite the opposite effects of TSH on TSHR and Tg expression, both genes are positively controlled by thyroid transcription factor-1 (TTF-1) and evidence has accumulated that TSH can decrease TTF-1 mRNA levels. In this report, we further characterize the action of TSH on TTF-1 in order to understand its different activities on the TSHR and Tg genes better. The effect of TSH on the TSHR requires the presence of insulin and serum and we show here that also both factors are necessary for the TSH effect to decrease TTF-1 mRNA levels. The decrease is paralleled by a downregulation of TTF-1 protein levels as well as by a decrease in TTF-1/DNA complex when the TTF-1 site of the TSHR promoter was used as probe. Again, the decrease requires insulin and serum. The TSH downregulation of TTF-1 mRNA levels is due to a decrease in its transcription rate. Using a luciferase-linked chimera construct spanning 5.18 kb of the TTF-1 5'-flanking region, we show that TSH decreases TTF-1 promoter activity and that this effect depends on insulin and serum. These data contrast with the action of TSH on Tg and Pax-8 gene expression. TSH increases Pax-8 mRNA levels and the increase is evident whether insulin and serum are present or not. Moreover, this increase is paralleled by an increase in Pax-8 protein binding to an oligonucleotide derived from the C site of the Tg promoter, which can bind both TTF-1 and Pax-8. The present data thus show that TTF-1 gene expression is interdependently regulated by TSH and serum growth factors including insulin. They also show this interdependent-regulation is not duplicated in the case of Pax-8. We suggest that these differences may contribute to the distinct ability of TSH to regulate TSHR versus Tg gene expression in FRLT-5 thyroid cells.


Asunto(s)
Proteínas de Unión al ADN/genética , Insulina/metabolismo , Proteínas Nucleares/genética , Glándula Tiroides/metabolismo , Tirotropina/metabolismo , Transactivadores/genética , Factores de Transcripción/genética , Animales , Secuencia de Bases , Línea Celular , Medios de Cultivo , AMP Cíclico/farmacología , ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box , Regiones Promotoras Genéticas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Glándula Tiroides/efectos de los fármacos , Factor Nuclear Tiroideo 1 , Tirotropina/farmacología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
8.
J Biol Chem ; 275(20): 15549-56, 2000 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-10809788

RESUMEN

cAMP-mediated cell proliferation is a complex process that involves multiple pathways. Using a cAMP-dependent cell system, FRTL-5 thyroid cells, we have previously demonstrated the existence of a precise autocrine loop in the control of cell proliferation that involves the positive effector thyrotropin (TSH) and the general inhibitor somatostatin. In search of the regulatory mechanisms responsible for the TSH and somatostatin control of cell proliferation, we analyzed the cell cycle regulatory proteins and the cellular pathways involved in the action of both signals. The results show that specific inhibition of cAMP-dependent protein kinase (PKA) and phosphatidylinositol (PI) 3-kinase blocks independently TSH-induced FRTL-5 cell proliferation and that somatostatin interferes with both signals. Each pathway activates different proteins required for G(1)/S progression. Thus, PKA is responsible for the TSH-induction of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA levels, RhoA activation, and down-regulation of p27(kip1). These correlated events are necessary for FRTL-5 cell proliferation after TSH stimulation. Moreover, TSH through PKA pathway increases cyclin-dependent kinase 2 levels, whereas PI 3-kinase signaling increases cyclin E levels. Together, both pathways finally converge, increasing the formation and activation of cyclin E x cyclin-dependent kinase 2 complexes and the phosphorylation of the retinoblastoma protein, two important steps in the transition from G(1) to S phase in growth-stimulated cells. Somatostatin exerts its antiproliferative effect inhibiting more upstream the TSH stimulation of PKA and PI 3-kinase, interfering with the TSH-mediated increases of intracellular cAMP levels by inactivation of adenylyl cyclase activity. Together, these results suggest the existence of a PKA-dependent pathway and a new PKA-independent PI 3-kinase pathway in the TSH/cAMP-mediated proliferation of FRTL-5 thyroid cells.


Asunto(s)
Quinasas CDC2-CDC28 , Ciclo Celular/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclina E/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Somatostatina/farmacología , Sulfonamidas , Tirotropina/farmacología , Proteína de Unión al GTP rhoA/metabolismo , Adenilil Ciclasas/metabolismo , Androstadienos/farmacología , Animales , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular , AMP Cíclico/metabolismo , Quinasa 2 Dependiente de la Ciclina , Inhibidores Enzimáticos/farmacología , Fase G1 , Isoquinolinas/farmacología , Proteínas Quinasas/metabolismo , Fase S , Glándula Tiroides , Wortmanina
9.
Int J Cancer ; 73(3): 449-55, 1997 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-9359494

RESUMEN

The structural integrity of the p53 gene in a human thyroid-medullary-carcinoma-derived cell line has been studied. Analysis of high-molecular-weight DNA showed that the p53 locus is severely rearranged. PCR and single-strand conformation polymorphism analysis revealed that a large portion of the 5' end of the p53 gene is lost, while a region encompassing exons 8 and 9 is rearranged. As a consequence, no virtual expression of a p53-specific transcript is detected in mRNA from the medullary-carcinoma cell line. The absence of a p53 protein prompted us to analyze the biological effect of exogenous expression of this tumor-suppressor gene on cell growth and viability, introducing retroviral constructs carrying full-length human wild-type p53 cDNA. Contrary to what has been described for other cell types, including most thyroid-carcinoma cell lines of follicular origin, these experiments allowed us to establish clonal-cell populations which constitutively express p53. Cytometric analysis revealed G1-specific cell-cycle arrest, responsible for growth retardation in the transfected clones when compared with the parental cell line. However, medullary-thyroid-carcinoma cells expressing p53 are able to partially overcome the G1 block and progress through the cell cycle. In the search of the mechanism(s) involved in these processes, we describe the interaction of p53 with specific p21WAF1/Cip1 promoter sequences by gel-retardation assays.


Asunto(s)
Carcinoma Medular/genética , Genes p53/genética , Neoplasias de la Tiroides/genética , Transfección , Southern Blotting , Carcinoma Medular/metabolismo , Carcinoma Medular/patología , Ciclo Celular/genética , División Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/genética , Ciclinas/metabolismo , Reordenamiento Génico , Humanos , Retroviridae/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA