Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(18): 3793-3809.e26, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37562401

RESUMEN

Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.


Asunto(s)
Células Endoteliales , Hígado , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/citología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fibrosis/metabolismo
2.
Hepatology ; 79(2): 289-306, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37540187

RESUMEN

BACKGROUND AND AIMS: Molecular classification is a promising tool for prognosis prediction and optimizing precision therapy for HCC. Here, we aimed to develop a molecular classification of HCC based on the fatty acid degradation (FAD) pathway, fully characterize it, and evaluate its ability in guiding personalized therapy. APPROACH AND RESULTS: We performed RNA sequencing (RNA-seq), PCR-array, lipidomics, metabolomics, and proteomics analysis of 41 patients with HCC, in which 17 patients received anti-programmed cell death-1 (PD-1) therapy. Single-cell RNA sequencing (scRNA-seq) was performed to explore the tumor microenvironment. Nearly, 60 publicly available multiomics data sets were analyzed. The associations between FAD subtypes and response to sorafenib, transarterial chemoembolization (TACE), immune checkpoint inhibitor (ICI) were assessed in patient cohorts, patient-derived xenograft (PDX), and spontaneous mouse model ls. A novel molecular classification named F subtype (F1, F2, and F3) was identified based on the FAD pathway, distinguished by clinical, mutational, epigenetic, metabolic, and immunological characteristics. F1 subtypes exhibited high infiltration with immunosuppressive microenvironment. Subtype-specific therapeutic strategies were identified, in which F1 subtypes with the lowest FAD activities represent responders to compounds YM-155 and Alisertib, sorafenib, anti-PD1, anti-PD-L1, and atezolizumab plus bevacizumab (T + A) treatment, while F3 subtypes with the highest FAD activities are responders to TACE. F2 subtypes, the intermediate status between F1 and F3, are potential responders to T + A combinations. We provide preliminary evidence that the FAD subtypes can be diagnosed based on liquid biopsies. CONCLUSIONS: We identified 3 FAD subtypes with unique clinical and biological characteristics, which could optimize individual cancer patient therapy and help clinical decision-making.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Multiómica , Medicina de Precisión , Ácidos Grasos , Microambiente Tumoral
3.
Hepatology ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028887

RESUMEN

BACKGROUND AND AIMS: In a recent trial, patients with severe alcohol-associated hepatitis treated with anakinra plus zinc (A+Z) had lower survival and higher acute kidney injury (AKI) rates versus prednisone (PRED). We characterize the clinical factors and potential mechanisms associated with AKI development in that trial. APPROACH AND RESULTS: Data from 147 participants in a multicenter randomized clinical trial (74 A+Z, 73 PRED) were analyzed. AKI, AKI phenotypes, and kidney injury biomarkers were compared between participants who did/did not develop AKI in the 2 treatment arms. Multivariable competing risk analyses were performed to identify baseline risk factors for incident AKI, with death treated as a competing event. Risk factors considered were age, sex, mean arterial pressure, white blood cell count, albumin, MELD, ascites, HE, and treatment arm. At baseline, no participants had AKI; 33% (n=49) developed AKI during follow-up. AKI incidence was higher in A+Z than in PRED (45% [n=33] versus 22% [n=16], p =0.001). AKI phenotypes were similar between the 2 treatment arms ( p =0.361), but peak AKI severity was greater in A+Z than PRED (stage 3 n=21 [63.6%] vs. n=8 [50.0%], p =0.035). At baseline, urine-neutrophil-gelatinase-associated lipocalin levels were similar between participants who developed AKI in both treatment arms ( p =0.319). However, day 7 and 14 urine-neutrophil-gelatinase-associated lipocalin levels were significantly elevated in participants treated with A+Z who developed AKI versus participants treated with PRED who developed AKI ( p =0.002 and 0.032, respectively). On multivariable competing risk analysis, only A+Z was independently associated with incident AKI (subdistribution hazard ratio 2.35, p =0.005). CONCLUSIONS: AKI occurred more frequently and was more severe in participants treated with A+Z. A+Z-treated participants with AKI had higher urine-neutrophil-gelatinase-associated lipocalin, suggesting that A+Z maybe nephrotoxic in patients with severe alcohol-associated hepatitis.

4.
J Hepatol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908436

RESUMEN

Chronic liver disease leads to hepatocellular injury that triggers a pro-inflammatory state in several parenchymal and non-parenchymal hepatic cell types, ultimately resulting in liver fibrosis, cirrhosis, portal hypertension and liver failure. Thus, an improved understanding of inflammasomes - as key molecular drivers of liver injury - may result in the development of novel diagnostic or prognostic biomarkers and effective therapeutics. In liver disease, innate immune cells respond to hepatic insults by activating cell-intrinsic inflammasomes via toll-like receptors and NF-κB, and by releasing pro-inflammatory cytokines (such as IL-1ß, IL-18, TNF-α and IL-6). Subsequently, cells of the adaptive immune system are recruited to fuel hepatic inflammation and hepatic parenchymal cells may undergo gasdermin D-mediated programmed cell death, termed pyroptosis. With liver disease progression, there is a shift towards a type 2 inflammatory response, which promotes tissue repair but also fibrogenesis. Inflammasome activation may also occur at extrahepatic sites, such as the white adipose tissue in MASH (metabolic dysfunction-associated steatohepatitis). In end-stage liver disease, flares of inflammation (e.g., in severe alcohol-related hepatitis) that spark on a dysfunctional immune system, contribute to inflammasome-mediated liver injury and potentially result in organ dysfunction/failure, as seen in ACLF (acute-on-chronic liver failure). This review provides an overview of current concepts regarding inflammasome activation in liver disease progression, with a focus on related biomarkers and therapeutic approaches that are being developed for patients with liver disease.

5.
J Hepatol ; 80(1): 140-154, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37741346

RESUMEN

Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.


Asunto(s)
Carcinoma Hepatocelular , Hepatopatías Alcohólicas , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Hepatopatías Alcohólicas/metabolismo , Carcinoma Hepatocelular/patología , Fosfolípidos/metabolismo , Neoplasias Hepáticas/patología , Hígado/patología
6.
Hepatology ; 78(5): 1448-1461, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37013923

RESUMEN

BACKGROUND AND AIMS: TGF-ß induces multiple structural and functional changes in quiescent HSCs, including an increase in proliferation, mitochondrial mass, and matrix deposition. HSC transdifferentiation requires significant bioenergetic capacity, and it is not known how TGF-ß-mediated transcriptional upregulation is coordinated with the bioenergetic capacity of HSCs. APPROACH AND RESULTS: Mitochondria are key bioenergetic organelles, and here, we report that TGF-ß induces release of mitochondrial DNA (mtDNA) from healthy HSCs through voltage-dependent anion channels (VDACs), with the formation of an mtDNA-CAP on the external mitochondrial membrane. This stimulates organization of cytosolic cyclic GMP-AMP synthase (cGAS) onto the mtDNA-CAP and subsequent activation of the cGAS-STING-IRF3 pathway. TGF-ß is unable to induce conversion of HSCs from a quiescent to a transdifferentiated phenotype in the absence of mtDNA, VDAC, or stimulator of interferon genes (STING). Transdifferentiation by TGF-ß is blocked by a STING inhibitor, which also reduces liver fibrosis prophylactically and therapeutically. CONCLUSIONS: We have identified a pathway that requires the presence of functional mitochondria for TGF-ß to mediate HSC transcriptional regulation and transdifferentiation and therefore provides a key link between bioenergetic capacity of HSCs and signals for transcriptional upregulation of genes of anabolic pathways.


Asunto(s)
ADN Mitocondrial , Células Estrelladas Hepáticas , Proteínas de la Membrana , Factor de Crecimiento Transformador beta , Humanos , Diferenciación Celular/genética , Diferenciación Celular/fisiología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células Estrelladas Hepáticas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
7.
BMC Urol ; 24(1): 102, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702664

RESUMEN

BACKGROUND: Fermented soy products have shown to possess inhibitory effects on prostate cancer (PCa). We evaluated the effect of a fermented soy beverage (Q-Can®), containing medium-chain triglycerides, ketones and soy isoflavones, among men with localized PCa prior to radical prostatectomy. METHODS: We conducted a placebo-controlled, double-blind randomized trial of Q-Can®. Stratified randomization (Cancer of the Prostate Risk Assessment (CAPRA) score at diagnosis) was used to assign patients to receive Q-Can® or placebo for 2-5 weeks before RP. Primary endpoint was change in serum PSA from baseline to end-of-study. We assessed changes in other clinical and pathologic endpoints. The primary ITT analysis compared PSA at end-of-study between randomization arms using repeated measures linear mixed model incorporating baseline CAPRA risk strata. RESULTS: We randomized 19 patients, 16 were eligible for analysis of the primary outcome. Mean age at enrollment was 61, 9(56.2%) were classified as low and intermediate risk, and 7(43.8%) high CAPRA risk. Among patients who received Q-Can®, mean PSA at baseline and end-of-study was 8.98(standard deviation, SD 4.07) and 8.02ng/mL(SD 3.99) compared with 8.66(SD 2.71) to 9.53ng/mL(SD 3.03), respectively, (Difference baseline - end-of-study, p = 0.36). There were no significant differences in Gleason score, clinical stage, surgical margin status, or CAPRA score between treatment arms (p > 0.05), and no significant differences between treatment arms in end-of-study or change in lipids, testosterone and FACT-P scores (p > 0.05). CONCLUSIONS: Short exposure to Q-Can® among patients with localized PCa was not associated with changes in PSA levels, PCa characteristics including grade and stage or serum testosterone. Due to early termination from inability to recruit, study power, was not achieved.


Asunto(s)
Prostatectomía , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Prostatectomía/métodos , Persona de Mediana Edad , Método Doble Ciego , Anciano , Antígeno Prostático Específico/sangre , Alimentos de Soja , Fermentación , Bebidas , Isoflavonas/uso terapéutico , Isoflavonas/administración & dosificación , Glycine max , Cuidados Preoperatorios/métodos
9.
Hepatology ; 70(4): 1443-1456, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30991446

RESUMEN

There is an urgent need for practical approaches to patients with nonalcoholic steatohepatitis (NASH). Total body weight loss (TBWL) is an important approach, as its effects are amplified in the liver, with 10% TBWL resulting in a 50% loss of liver triglycerides and improvement in all aspects of NASH histology. Lifestyle changes are the first step in addressing TBWL, but uncommonly result in the range required to improve liver histology in NASH (7%-10%). Weight loss medications (WLMs) are an effective additional tool because they can provide TBWL in the 7%-10% range, have a well-characterized clinical profile, have clear guidelines, and meet approved criteria for their use (body mass index greater than 27 kg/m2 ) for most NASH patients. Use of WLMs requires shared decision making with the patient, which hepatologists, due to their understanding of the natural history of NASH, are uniquely positioned to provide. WLMs do present the challenge of incorporating new medications into the hepatology clinic, but this will be necessary with all medications to manage NASH. WLMs provide a practical intervention that can be incorporated into hepatology clinics and can be offered to most NASH patients. NASH-specific medicines in clinical trials offer partial histological responses, and TBWL will likely enhance this. Conclusion: WLMs provide the hepatologist with effective and welcome clinical intervention beyond the diagnosis and staging of NASH and provide patients with a sense of empowerment about the treatment of their liver disease.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Índice de Masa Corporal , Mantenimiento del Peso Corporal , Enfermedad del Hígado Graso no Alcohólico/terapia , Dieta con Restricción de Grasas , Manejo de la Enfermedad , Femenino , Gastroenterología , Humanos , Estilo de Vida , Masculino , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Pronóstico , Resultado del Tratamiento
10.
J Hepatol ; 80(4): 540-542, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38244846

Asunto(s)
Hígado , Transcriptoma
11.
J Hepatol ; 69(3): 687-696, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29705237

RESUMEN

BACKGROUND & AIMS: Sterile inflammation resulting in alcoholic hepatitis (AH) occurs unpredictably after many years of excess alcohol intake. The factors responsible for the development of AH are not known but mitochondrial damage with loss of mitochondrial function are common features. Hcar2 is a G-protein coupled receptor which is activated by ß-hydroxybutyrate (BHB). We aimed to determine the relevance of the BHB-Hcar2 pathway in alcoholic liver disease. METHODS: We tested if loss of BHB production can result in increased liver inflammation. We further tested if BHB supplementation is protective in AH through interaction with Hcar2, and analyzed the immune and cellular basis for protection. RESULTS: Humans with AH have reduced hepatic BHB, and inhibition of BHB production in mice aggravated ethanol-induced AH, with higher plasma alanine aminotransferase levels, increased steatosis and greater neutrophil influx. Conversely supplementation of BHB had the opposite effects with reduced alanine aminotransferase levels, reduced steatosis and neutrophil influx. This therapeutic effect of BHB is dependent on the receptor Hcar2. BHB treatment increased liver Il10 transcripts, and promoted the M2 phenotype of intrahepatic macrophages. BHB also increased the transcriptional level of M2 related genes in vitro bone marrow derived macrophages. This skewing towards M2 related genes is dependent on lower mitochondrial membrane potential (Δψ) induced by BHB. CONCLUSIONS: Collectively, our data shows that BHB production during excess alcohol consumption has an anti-inflammatory and hepatoprotective role through an Hcar2 dependent pathway. This introduces the concept of metabolite-based therapy for AH. LAY SUMMARY: Alcoholic hepatitis is a life-threatening condition with no approved therapy that occurs unexpectedly in people who consume excess alcohol. The liver makes many metabolites, and we demonstrate that loss of one such metabolite ß-hydroxybutyrate occurs in patients with alcoholic hepatitis. This loss can increase alcohol-induced liver injury, and ß-hydroxybutyrate can protect from alcohol-induced liver injury via a receptor on liver macrophages. This opens the possibility of metabolite-based therapy for alcoholic hepatitis.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , AMP Cíclico/metabolismo , Hepatopatías Alcohólicas , Hígado , Mitocondrias Hepáticas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Depresores del Sistema Nervioso Central/efectos adversos , Depresores del Sistema Nervioso Central/metabolismo , Etanol/efectos adversos , Etanol/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Hepatopatías Alcohólicas/prevención & control , Pruebas de Función Hepática , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Sustancias Protectoras/metabolismo
12.
J Hepatol ; 69(2): 396-405, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29654817

RESUMEN

BACKGROUND & AIMS: The degree of cholestasis is an important disease driver in alcoholic hepatitis, a severe clinical condition that needs new biomarkers and targeted therapies. We aimed to identify the largely unknown mechanisms and biomarkers linked to cholestasis in alcoholic hepatitis. METHODS: Herein, we analyzed a well characterized cohort of patients with alcoholic hepatitis and correlated clinical and histological parameters and outcomes with serum bile acids and fibroblast growth factor 19 (FGF19), a major regulator of bile acid synthesis. RESULTS: We found that total and conjugated bile acids were significantly increased in patients with alcoholic hepatitis compared with controls. Serum FGF19 levels were strongly increased and gene expression of FGF19 was induced in biliary epithelial cells and ductular cells of patients with alcoholic hepatitis. De novo bile acid synthesis (CYP7A1 gene expression and C4 serum levels) was significantly decreased in patients with alcoholic hepatitis. Importantly, total and conjugated bile acids correlated positively with FGF19 and with disease severity (model for end-stage liver disease score). FGF19 correlated best with conjugated cholic acid, and model for end-stage liver disease score best with taurine-conjugated chenodeoxycholic acid. Univariate analysis demonstrated significant associations between FGF19 and bilirubin as well as gamma glutamyl transferase, and negative correlations between FGF19 and fibrosis stage as well as polymorphonuclear leukocyte infiltration, in all patients with alcoholic hepatitis. CONCLUSION: Serum FGF19 and bile acids are significantly increased in patients with alcoholic hepatitis, while de novo bile acid synthesis is suppressed. Modulation of bile acid metabolism or signaling could represent a promising target for treatment of alcoholic hepatitis in humans. LAY SUMMARY: Understanding the underlying mechanisms that drive alcoholic hepatitis is important for the development of new biomarkers and targeted therapies. Herein, we describe a molecule that is increased in patients with alcoholic hepatitis. Modulating the molecular pathway of this molecule might lead to promising targets for the treatment of alcoholic hepatitis.


Asunto(s)
Ácidos y Sales Biliares , Colestasis , Factores de Crecimiento de Fibroblastos/sangre , Hepatitis Alcohólica , Neutrófilos/patología , Ácidos y Sales Biliares/biosíntesis , Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/metabolismo , Biomarcadores/sangre , Colestasis/etiología , Colestasis/metabolismo , Correlación de Datos , Femenino , Hepatitis Alcohólica/sangre , Hepatitis Alcohólica/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Infiltración Neutrófila , Índice de Severidad de la Enfermedad , Transducción de Señal/fisiología
13.
J Immunol ; 196(1): 437-47, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26582949

RESUMEN

Inflammation is well established to significantly impact metabolic diseases. The inflammatory protease caspase-1 has been implicated in metabolic dysfunction; however, a potential role for the related inflammatory caspases is currently unknown. In this study, we investigated a role for caspase-11 and caspase-12 in obesity and insulin resistance. Loss of caspase-12 in two independently generated mouse strains predisposed mice to develop obesity, metabolic inflammation, and insulin resistance, whereas loss of caspase-11 had no effect. The use of bone marrow chimeras determined that deletion of caspase-12 in the radio-resistant compartment was responsible for this metabolic phenotype. The Nlrp3 inflammasome pathway mediated the metabolic syndrome of caspase-12-deficient mice as ablation of Nlrp3 reversed Casp12(-/-) mice obesity phenotype. Although the majority of people lack a functional caspase-12 because of a T(125) single nucleotide polymorphism that introduces a premature stop codon, a fraction of African descendents express full-length caspase-12. Expression of caspase-12 was linked to decreased systemic and adipose tissue inflammation in a cohort of African American obese children. However, analysis of the Dallas Heart Study African American cohort indicated that the coding T(125)C single nucleotide polymorphism was not associated with metabolic parameters in humans, suggesting that host-specific differences mediate the expressivity of metabolic disease.


Asunto(s)
Caspasa 12/fisiología , Caspasas/fisiología , Resistencia a la Insulina/genética , Obesidad/genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Caspasa 12/genética , Caspasas/genética , Caspasas Iniciadoras , Intolerancia a la Glucosa/genética , Humanos , Inflamación/genética , Inflamación/inmunología , Masculino , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Polimorfismo de Nucleótido Simple/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
14.
Nature ; 482(7384): 179-85, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22297845

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and the leading cause of chronic liver disease in the Western world. Twenty per cent of NAFLD individuals develop chronic hepatic inflammation (non-alcoholic steatohepatitis, NASH) associated with cirrhosis, portal hypertension and hepatocellular carcinoma, yet the causes of progression from NAFLD to NASH remain obscure. Here, we show that the NLRP6 and NLRP3 inflammasomes and the effector protein IL-18 negatively regulate NAFLD/NASH progression, as well as multiple aspects of metabolic syndrome via modulation of the gut microbiota. Different mouse models reveal that inflammasome-deficiency-associated changes in the configuration of the gut microbiota are associated with exacerbated hepatic steatosis and inflammation through influx of TLR4 and TLR9 agonists into the portal circulation, leading to enhanced hepatic tumour-necrosis factor (TNF)-α expression that drives NASH progression. Furthermore, co-housing of inflammasome-deficient mice with wild-type mice results in exacerbation of hepatic steatosis and obesity. Thus, altered interactions between the gut microbiota and the host, produced by defective NLRP3 and NLRP6 inflammasome sensing, may govern the rate of progression of multiple metabolic syndrome-associated abnormalities, highlighting the central role of the microbiota in the pathogenesis of heretofore seemingly unrelated systemic auto-inflammatory and metabolic disorders.


Asunto(s)
Progresión de la Enfermedad , Hígado Graso/metabolismo , Hígado Graso/patología , Inflamasomas/metabolismo , Obesidad/metabolismo , Obesidad/patología , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/metabolismo , Colina , Colon/microbiología , Proteínas del Citoesqueleto/deficiencia , Modelos Animales de Enfermedad , Hígado Graso/genética , Inflamación/metabolismo , Inflamación/patología , Interleucina-18/deficiencia , Masculino , Metagenoma , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad del Hígado Graso no Alcohólico , ARN Ribosómico 16S/genética , Receptores de Superficie Celular/metabolismo , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/metabolismo , Factor de Necrosis Tumoral alfa/deficiencia , Factor de Necrosis Tumoral alfa/metabolismo
15.
Am J Respir Crit Care Med ; 196(12): 1571-1581, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28783377

RESUMEN

RATIONALE: Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-ß1 (TGF-ß1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF. OBJECTIVES: We aimed to define an association between mtDNA and fibroblast responses in IPF. METHODS: We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-ß1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects. MEASUREMENTS AND MAIN RESULTS: Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-ß1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival. CONCLUSIONS: These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.


Asunto(s)
ADN Mitocondrial/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/mortalidad , Anciano , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino
17.
Semin Liver Dis ; 36(1): 27-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26870930

RESUMEN

Nonalcoholic fatty liver disease represents a wide spectrum of conditions and is currently the most common form of chronic liver disease affecting both adults and children in the United States and many other parts of the world. Great effort has been focused on the development of novel therapies for those patients with the more advanced forms of the disease, in particular those with nonalcoholic steatohepatitis (NASH) and liver fibrosis that can be associated with significant morbidity and mortality. In this review, the authors focus on the role of cell death and sterile inflammatory pathways as well as the self-perpetuating deleterious cycle they may trigger as novel therapeutic targets for the treatment of fibrotic NASH.


Asunto(s)
Antiinflamatorios/uso terapéutico , Mediadores de Inflamación/antagonistas & inhibidores , Hígado/efectos de los fármacos , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Antiinflamatorios/efectos adversos , Muerte Celular/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Terapia Molecular Dirigida/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
18.
Hepatology ; 62(3): 762-72, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25761863

RESUMEN

UNLABELLED: Alcoholic hepatitis (AH) frequently progresses to multiple organ failure (MOF) and death. However, the driving factors are largely unknown. At admission, patients with AH often show criteria of systemic inflammatory response syndrome (SIRS) even in the absence of an infection. We hypothesize that the presence of SIRS may predispose to MOF and death. To test this hypothesis, we studied a cohort including 162 patients with biopsy-proven AH. The presence of SIRS and infections was assessed in all patients, and multivariate analyses identified variables independently associated with MOF and 90-day mortality. At admission, 32 (19.8%) patients were diagnosed with a bacterial infection, while 75 (46.3%) fulfilled SIRS criteria; 58 patients (35.8%) developed MOF during hospitalization. Short-term mortality was significantly higher among patients who developed MOF (62.1% versus 3.8%, P < 0.001). The presence of SIRS was a major predictor of MOF (odds ratio = 2.69, P = 0.025) and strongly correlated with mortality. Importantly, the course of patients with SIRS with and without infection was similar in terms of MOF development and short-term mortality. Finally, we sought to identify serum markers that differentiate SIRS with and without infection. We studied serum levels of high-sensitivity C-reactive protein, procalcitonin, and lipopolysaccharide at admission. All of them predicted mortality. Procalcitonin, but not high-sensitivity C-reactive protein, serum levels identified those patients with SIRS and infection. Lipopolysaccharide serum levels predicted MOF and the response to prednisolone. CONCLUSION: In the presence or absence of infections, SIRS is a major determinant of MOF and mortality in AH, and the mechanisms involved in the development of SIRS should be investigated; procalcitonin serum levels can help to identify patients with infection, and lipopolysaccharide levels may help to predict mortality and the response to steroids.


Asunto(s)
Hepatitis Alcohólica/sangre , Hepatitis Alcohólica/mortalidad , Lipopolisacáridos/sangre , Insuficiencia Multiorgánica/mortalidad , Síndrome de Respuesta Inflamatoria Sistémica/etiología , Síndrome de Respuesta Inflamatoria Sistémica/mortalidad , Biomarcadores/sangre , Proteína C-Reactiva/análisis , Calcitonina/sangre , Péptido Relacionado con Gen de Calcitonina , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Hepatitis Alcohólica/complicaciones , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/fisiopatología , Análisis Multivariante , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Precursores de Proteínas/sangre , Estudios Retrospectivos , Medición de Riesgo , Índice de Severidad de la Enfermedad , España , Análisis de Supervivencia , Síndrome de Respuesta Inflamatoria Sistémica/fisiopatología
20.
Am J Physiol Gastrointest Liver Physiol ; 308(8): G643-51, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25700081

RESUMEN

In this review we summarize the role of inflammasomes in pancreatic physiology and disease with a focus on acute pancreatitis where much recent progress has been made. New findings have identified inducers of and cell specificity of inflammasome component expression in the pancreas, the contribution of inflammasome-regulated effectors to pancreatitis, and metabolic regulation of inflammasome activation, which are strong determinants of injury in pancreatitis. New areas of pancreatic biology will be highlighted in the context of our evolving understanding of gut microbiome- and injury-induced inflammasome priming, pyroptosis, and innate immune-mediated regulation of cell metabolism.


Asunto(s)
Inflamasomas/inmunología , Páncreas/inmunología , Enfermedades Pancreáticas/inmunología , Animales , Humanos , Inmunidad Innata , Inflamasomas/metabolismo , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Páncreas/metabolismo , Páncreas/patología , Enfermedades Pancreáticas/metabolismo , Enfermedades Pancreáticas/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA