Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biophotonics ; 12(12): e201900130, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31468729

RESUMEN

Photoacoustic endoscopy (PAE) is an emerging imaging modality, which offers a high imaging penetration and a high optical contrast in soft tissue. Most of the developed endoscopic photoacoustic sensing systems use miniaturized contact ultrasound transducers or complex optical approaches. In this work, a new fiber-based detection technique using speckle analysis for contact-free signal detection is presented. Phantom and ex vivo experiments are performed in transmission and reflection mode for proof of concept. In summary, the potential of the technique for endoscopic photoacoustic signal detection is demonstrated. The new technique might help in future to broaden the applications of PAE in imaging or guiding minimally invasive laser procedures.


Asunto(s)
Endoscopía , Técnicas Fotoacústicas/métodos , Tejido Adiposo/diagnóstico por imagen , Animales , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Relación Señal-Ruido , Porcinos
2.
Biomed Opt Express ; 10(2): 807-816, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30800516

RESUMEN

Laser surgery provides clean, fast and accurate cutting of tissue. However, it is difficult to detect what kind of tissue is being cut. Therefore, a wrong cut may lead to iatrogenic damage of structures. A feedback system should automatically stop the cutting process when a nerve is reached or accidentally being cut to prevent its damage. This could increase the applicability and safety of using a laser scalpel in surgical procedures. In this study, random lasing (RL) is used to differentiate between skin, fat, muscle and nerve tissue. Among these tissue types, a special emphasis is made on the differentiation of nerve from the rest of the tissues, especially fat since nerve is covered by a fatty layer. The differentiation is done for ex-vivo tissues of a pig animal model. The results show that random lasing can be used to differentiate these tissue types also under room light conditions in open air.

3.
Sci Rep ; 9(1): 1057, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705342

RESUMEN

Laser surgery is a rising surgical technique, which offers several advantages compared to the traditional scalpel. However, laser surgery lacks a contact-free feedback system which offers high imaging contrast to identify the tissue type ablated and also a high penetration depth. Photoacoustic imaging has the potential to fill this gap. Since photoacoustic detection is commonly contact based, a new non-interferometric detection technique based on speckle-analysis for remote detection is presented in this work. Phantom and ex-vivo experiments are carried out in transmission and reflection-mode for proof of concept. In summary, the potential of the remote speckle sensing technique for photoacoustic detection is demonstrated. In future, this technique might be applied for usage as a remote feedback system for laser surgery, which could help to broaden the applications of lasers as smart surgical tools.

4.
J Biophotonics ; 10(10): 1250-1261, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27875030

RESUMEN

Compared to conventional techniques, Laser surgery procedures provide a number of advantages, but may be associated with an increased risk of iatrogenic damage to important anatomical structures. The type of tissue ablated in the focus spot is unknown. Laser-Induced Breakdown-Spectroscopy (LIBS) has the potential to gain information about the type of material that is being ablated by the laser beam. This may form the basis for tissue selective laser surgery. In the present study, 7 different porcine tissues (cortical and cancellous bone, nerve, mucosa, enamel, dentine and pulp) from 6 animals were analyzed for their qualitative and semiquantitative molecular composition using LIBS. The so gathered data was used to first differentiate between the soft- and hard-tissues using a Calcium-Carbon emission based classifier. The tissues were then further classified using emission-ratio based analysis, principal component analysis (PCA) and linear discriminant analysis (LDA). The relatively higher concentration of Calcium in the hard tissues allows for an accurate first differentiation of soft- and hard tissues (100% sensitivity and specificity). The ratio based statistical differentiation approach yields results in the range from 65% (enamel-dentine pair) to 100% (nerve-pulp, cancellous bone-dentine, cancellous bone-enamel pairs) sensitivity and specificity. Experimental LIBS measuring setup.


Asunto(s)
Terapia por Láser/métodos , Animales , Especificidad de Órganos , Porcinos
5.
J Biophotonics ; 9(10): 1021-1032, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26790774

RESUMEN

In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation.


Asunto(s)
Adipocitos/citología , Diferenciación Celular , Terapia por Láser , Neuronas/citología , Animales , Rayos Láser , Luz , Análisis Espectral , Porcinos
6.
Biomed Opt Express ; 5(11): 4013-23, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25426327

RESUMEN

Laser surgery enables for very accurate, fast and clean modeling of tissue. The specific and controlled cutting and ablation of tissue, however, remains a central challenge in the field of clinical laser applications. The lack of information on what kind of tissue is being ablated at the bottom of the cut may lead to iatrogenic damage of structures that were meant to be preserved. One such example is the shaping or removal of diseased cartilaginous and bone tissue in the temporomandibular joint (TMJ). Diseases of the TMJ can induce deformation and perforation of the cartilaginous discus articularis, as well as alterations to the cartilaginous surface of the condyle or even the bone itself. This may result in restrictions of movement and pain. The aim of a surgical intervention ranges from specific ablation and shaping of diseased cartilage, bone or synovial tissues to extensive removal of TMJ structures. One approach to differentiate between these tissues is to use Laser Induced Breakdown Spectroscopy (LIBS). The ultimate goal is a LIBS guided feedback control system for surgical laser systems that enables real-time tissue identification for tissue specific ablation. In the presented study, the authors focused on the LIBS based differentiation between cartilage tissue and cortical bone tissue using an ex-vivo pig model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA