Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Oncologist ; 29(1): e25-e37, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37390841

RESUMEN

BACKGROUND: The association between different phenotypes and genotypes of circulating tumor cells (CTCs) and efficacy of neoadjuvant chemotherapy (NAC) remains uncertain. This study was conducted to evaluate the relationship of FTH1 gene-associated CTCs (F-CTC) with/without epithelial-mesenchymal transition (EMT) markers, or their dynamic changes with the efficacy of NAC in patients with non-metastatic breast cancer. PATIENTS AND METHODS: This study enrolled 120 patients with non-metastatic breast cancer who planned to undergo NAC. The FTH1 gene and EMT markers in CTCs were detected before NAC (T0), after 2 cycles of chemotherapy (T1), and before surgery (T2). The associations of these different types of CTCs with rates of pathological complete response (pCR) and breast-conserving surgery (BCS) were evaluated using the binary logistic regression analysis. RESULTS: F-CTC in peripheral blood ≥1 at T0 was an independent factor for pCR rate in patients with HER2-positive (odds ratio [OR]=0.08, 95% confidence interval [CI], 0.01-0.98, P = .048). The reduction in the number of F-CTC at T2 was an independent factor for BCS rate (OR = 4.54, 95% CI, 1.14-18.08, P = .03). CONCLUSIONS: The number of F-CTC prior to NAC was related to poor response to NAC. Monitoring of F-CTC may help clinicians formulate personalized NAC regimens and implement BCS for patients with non-metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/cirugía , Células Neoplásicas Circulantes/patología , Estudios Prospectivos , Terapia Neoadyuvante , Mastectomía Segmentaria , Ferritinas/uso terapéutico , Oxidorreductasas/uso terapéutico
2.
Nat Rev Mol Cell Biol ; 13(1): 7-12, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22166994

RESUMEN

The autophagosome is the central organelle in macroautophagy, a vacuolar lysosomal catabolic pathway that degrades cytoplasmic material to fuel starving cells and eliminates intracellular pathogens. Macroautophagy has important physiological roles during development, ageing and the immune response, and its cytoprotective function is compromised in various diseases. A set of autophagy-related (ATG) proteins is hierarchically recruited to the phagophore, the initial membrane template in the construction of the autophagosome. However, recent findings suggest that macroautophagy can also occur in the absence of some of these key autophagy proteins, through the unconventional biogenesis of canonical autophagosomes. Such alternatives to the evolutionarily conserved scheme might provide additional therapeutic opportunities.


Asunto(s)
Autofagia , Fagosomas/metabolismo , Humanos , Lisosomas/metabolismo , Vacuolas/metabolismo
3.
Mol Cancer ; 21(1): 8, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980129

RESUMEN

BACKGROUND: Approximate 25% HER2-positive (HER2+) breast cancer (BC) patients treated with trastuzumab recurred rapidly. However, the mechanisms underlying trastuzumab resistance remained largely unclear. METHODS: Trastuzumab-resistant associated circRNAs were identified by circRNAs high-throughput screen and qRT-PCR in HER2+ breast cancer tissues with different trastuzumab response. The biological roles of trastuzumab-resistant associated circRNAs were detected by cell vitality assay, colony formation assay, Edu assay, patient-derived xenograft (PDX) models and orthotopic animal models. For mechanisms research, the co-immunoprecipitation, Western blot, immunofluorescence, and pull down assays confirmed the relevant mechanisms of circRNA and binding proteins. RESULTS: We identified a circRNA circCDYL2, which was overexpressed in trastuzumab-resistant patients, which conferred trastuzumab resistance in breast cancer cells in vitro and in vivo. Mechanically, circCDYL2 stabilized GRB7 by preventing its ubiquitination degradation and enhanced its interaction with FAK, which thus sustained the activities of downstream AKT and ERK1/2. Trastuzumab-resistance of HER2+ BC cells with high circCDYL2 could be reversed by FAK or GRB7 inhibitor. Clinically, HER2+ BC patients with high levels of circCDYL2 developed rapid recurrence and had shorter disease-free survival (DFS) and overall survival (OS) following anti-HER2 therapy compared to those with low circCDYL2. CONCLUSIONS: circCDYL2-GRB7-FAK complex plays a critical role in maintaining HER2 signaling, which contributes to trastuzumab resistance and circCDYL2 is a potential biomarker for trastuzumab-resistance in HER2+ BC patients.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas Co-Represoras/genética , Resistencia a Antineoplásicos/genética , Hidroliasas/genética , ARN Circular , Receptor ErbB-2/metabolismo , Transducción de Señal , Animales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Proteína Adaptadora GRB7/metabolismo , Humanos , Ratones , Unión Proteica , Proteolisis , Radioterapia , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/genética , Ubiquitinación
4.
Mol Cancer ; 19(1): 27, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32028963

RESUMEN

Cancer is now considered as a heterogeneous ecosystem in which tumor cells collaborate with each other and with host cells in their microenvironment. As circumstances change, the ecosystem evolves to ensure the survival and growth of the cancer cells. In this ecosystem, metabolism is not only a key player but also drives stemness. In this review, we first summarize our current understanding of how autophagy influences cancer stem cell phenotype. We emphasize metabolic pathways in cancer stem cells and discuss how autophagy-mediated regulation metabolism is involved in their maintenance and proliferation. We then provide an update on the role of metabolic reprogramming and plasticity in cancer stem cells. Finally, we discuss how metabolic pathways in cancer stem cells could be therapeutically targeted.


Asunto(s)
Autofagia , Redes y Vías Metabólicas , Neoplasias/patología , Células Madre Neoplásicas/patología , Microambiente Tumoral , Animales , Humanos , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo
5.
Mol Cancer ; 19(1): 65, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213200

RESUMEN

BACKGROUND: Although both circular RNAs (circRNAs) and autophagy are associated with the function of breast cancer (BC), whether circRNAs regulate BC progression via autophagy remains unknown. In this study, we aim to explore the regulatory mechanisms and the clinical significance of autophagy-associated circRNAs in BC. METHODS: Autophagy associated circRNAs were screened by circRNAs deep sequencing and validated by qRT-PCR in BC tissues with high- and low- autophagic level. The biological function of autophagy associated circRNAs were assessed by plate colony formation, cell viability, transwells, flow cytometry and orthotopic animal models. For mechanistic study, RNA immunoprecipitation, circRNAs pull-down, Dual luciferase report assay, Western Blot, Immunofluorescence and Immunohistochemical staining were performed. RESULTS: An autophagy associated circRNA circCDYL was elevated by 3.2 folds in BC tissues as compared with the adjacent non-cancerous tissues, and circCDYL promoted autophagic level in BC cells via the miR-1275-ATG7/ULK1 axis; Moreover, circCDYL enhanced the malignant progression of BC cells in vitro and in vivo. Clinically, increased circCDYL in the tumor tissues and serum of BC patients was associated with higher tumor burden, shorter survival and poorer clinical response to therapy. CONCLUSIONS: circCDYL promotes BC progression via the miR-1275-ATG7/ULK1-autophagic axis and circCDYL could act as a potential prognostic and predictive molecule for breast cancer patients.


Asunto(s)
Autofagia , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Proteínas Co-Represoras/metabolismo , Hidroliasas/metabolismo , MicroARNs/genética , ARN Circular/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Proteínas Co-Represoras/genética , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hidroliasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Annu Rev Pharmacol Toxicol ; 57: 375-398, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28061686

RESUMEN

Macroautophagy (hereafter called autophagy) is a vacuolar, lysosomal pathway for catabolism of intracellular material that is conserved among eukaryotic cells. Autophagy plays a crucial role in tissue homeostasis, adaptation to stress situations, immune responses, and the regulation of the inflammatory response. Blockade or uncontrolled activation of autophagy is associated with cancer, diabetes, obesity, cardiovascular disease, neurodegenerative disease, autoimmune disease, infection, and chronic inflammatory disease. During the past decade, researchers have made major progress in understanding the three levels of regulation of autophagy in mammalian cells: signaling, autophagosome formation, and autophagosome maturation and lysosomal degradation. As we discuss in this review, each of these levels is potentially druggable, and, depending on the indication, may be able to stimulate or inhibit autophagy. We also summarize the different modulators of autophagy and their potential and limitations in the treatment of life-threatening diseases.


Asunto(s)
Autofagia/fisiología , Transducción de Señal/fisiología , Animales , Autofagia/efectos de los fármacos , Ensayos Clínicos como Asunto/métodos , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/patología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Transducción de Señal/efectos de los fármacos , Sirolimus/análogos & derivados , Sirolimus/farmacología , Sirolimus/uso terapéutico
7.
Semin Cancer Biol ; 53: 125-138, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30071257

RESUMEN

Iron is an essential nutrient that facilitates cell proliferation and growth. Iron can be detrimental, however. The ability of iron to cycle between oxidized and reduced forms contributes to the formation of free radicals. An excess of free radicals leads to lipid peroxidation, more reactive oxygen species and oxidative stress, damage to DNA and other biomolecules, and, if potentially, tumorigenesis. Iron also has a role in the maintenance of the tumor microenvironment and in metastasis. Pathways of iron acquisition, efflux, storage, and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumor cell survival. Recent studies have shed light on the role of iron metabolism in cancer stem cells (CSC) and suggest that specific targeting of iron metabolism in CSCs may improve the efficacy of cancer therapy. In this review, we first summarize briefly our current understanding of the intracellular processes involving iron, the effect of dietary iron, and its relation to cancer. We emphasize the importance of modifier "iron genes" in cancer and the possibility that these genes may encode biomarkers that may be used clinically. We then provide an update on the role of iron in metabolic reprogramming, the epithelial-mesenchymal transition, and the regulation of epigenetic marks essential for CSC maintenance and plasticity. Finally, we discuss the potential of targeting a recently discovered form of iron-regulated cell death, ferroptosis, in CSCs for treatment of cancer.


Asunto(s)
Homeostasis/fisiología , Hierro/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Antineoplásicos/uso terapéutico , Muerte Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos , Quelantes del Hierro/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Células Madre Neoplásicas/efectos de los fármacos
8.
Stem Cells ; 33(7): 2268-79, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25858676

RESUMEN

Hematopoietic stem/progenitor cells (HSPCs) are regulated through numerous molecular mechanisms that have not been interconnected. The transcription factor stem cell leukemia/T-cell acute leukemia 1 (TAL1) controls human HSPC but its mechanism of action is not clarified. In this study, we show that knockdown (KD) or short-term conditional over-expression (OE) of TAL1 in human HSPC ex vivo, respectively, blocks and maintains hematopoietic potentials, affecting proliferation of human HSPC. Comparative gene expression analyses of TAL1/KD and TAL1/OE human HSPC revealed modifications of cell cycle regulators as well as previously described TAL1 target genes. Interestingly an inverse correlation between TAL1 and DNA damage-induced transcript 4 (DDiT4/REDD1), an inhibitor of the mammalian target of rapamycin (mTOR) pathway, is uncovered. Low phosphorylation levels of mTOR target proteins in TAL1/KD HSPC confirmed an interplay between mTOR pathway and TAL1 in correlation with TAL1-mediated effects of HSPC proliferation. Finally chromatin immunoprecipitation experiments performed in human HSPC showed that DDiT4 is a direct TAL1 target gene. Functional analyses showed that TAL1 represses DDiT4 expression in HSPCs. These results pinpoint DDiT4/REDD1 as a novel target gene regulated by TAL1 in human HSPC and establish for the first time a link between TAL1 and the mTOR pathway in human early hematopoietic cells. Stem Cells 2015;33:2268-2279.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Choque Térmico/metabolismo , Células Madre Hematopoyéticas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Choque Térmico/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos NOD , Proteínas Proto-Oncogénicas/genética , Factor 1 de Transcripción de Linfocitos T , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/genética , Transfección
9.
Semin Cancer Biol ; 23(5): 361-79, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23811268

RESUMEN

The modulation of macroautophagy is now recognized as one of the hallmarks of cancer cells. There is accumulating evidence that autophagy plays a role in the various stages of tumorigenesis. Depending on the type of cancer and the context, macroautophagy can be tumor suppressor or it can help cancer cells to overcome metabolic stress and the cytotoxicity of chemotherapy. Recent studies have shed light on the role of macroautophagy in tumor-initiating cells, in tumor immune response cross-talk with the microenvironment. This review is intended to provide an up-date on these aspects, and to discuss them with regard to the role of the major signaling sub-networks involved in tumor progression (Beclin 1, MTOR, p53 and RAS) and in regulating autophagy.


Asunto(s)
Autofagia/fisiología , Neoplasias/patología , Animales , Progresión de la Enfermedad , Humanos , Transducción de Señal
10.
Cell Death Dis ; 14(11): 744, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968262

RESUMEN

Ferroptosis constitutes a promising therapeutic strategy against cancer by efficiently targeting the highly tumorigenic and treatment-resistant cancer stem cells (CSCs). We previously showed that the lysosomal iron-targeting drug Salinomycin (Sal) was able to eliminate CSCs by triggering ferroptosis. Here, in a well-established breast CSCs model (human mammary epithelial HMLER CD24low/CD44high), we identified that pharmacological inhibition of the mechanistic target of rapamycin (mTOR), suppresses Sal-induced ferroptosis. Mechanistically, mTOR inhibition modulates iron cellular flux and thereby limits iron-mediated oxidative stress. Furthermore, integration of multi-omics data identified mitochondria as a key target of Sal action, leading to profound functional and structural alteration prevented by mTOR inhibition. On top of that, we found that Sal-induced metabolic plasticity is mainly dependent on the mTOR pathway. Overall, our findings provide experimental evidence for the mechanisms of mTOR as a crucial effector of Sal-induced ferroptosis pointing not only that metabolic reprogramming regulates ferroptosis, but also providing proof-of-concept that careful evaluation of such combination therapy (here mTOR and ferroptosis co-targeting) is required in the development of an effective treatment.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Hierro/metabolismo , Células Madre Neoplásicas/metabolismo
11.
Cells ; 11(15)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35954167

RESUMEN

Autophagy, a lysosome-mediated cellular degradation pathway, recycles intracellular components to maintain metabolic balance and survival. Autophagy plays an important role in tumor immunotherapy as a "double-edged sword" that can both promote and inhibit tumor progression. Autophagy acts on innate and adaptive immunity and interacts with immune cells to modulate tumor immunotherapy. The discovery of autophagy inducers and autophagy inhibitors also provides new insights for clinical anti-tumor therapy. However, there are also difficulties in the application of autophagy-related regulators, such as low bioavailability and the lack of efficient selectivity. This review focuses on autophagy-related immunogenic regulation and its application in cancer therapy.


Asunto(s)
Neoplasias , Inmunidad Adaptativa , Autofagia/fisiología , Homeostasis , Humanos , Inmunoterapia , Neoplasias/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166293, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34688868

RESUMEN

Recent advances highlight that non-coding RNAs (ncRNAs) are emerging as fundamental regulators in various physiological as well as pathological processes by regulating macro-autophagy. Studies have disclosed that macro-autophagy, which is a highly conserved process involving cellular nutrients, components, and recycling of organelles, can be either selective or non-selective and ncRNAs show their regulation on selective autophagy as well as non-selective autophagy. The abnormal expression of ncRNAs will result in the impairment of autophagy and contribute to carcinogenesis and cancer progression by regulating both selective autophagy as well as non-selective autophagy. This review focuses on the regulatory roles of ncRNAs in autophagy and their involvement in cancer which may provide valuable therapeutic targets for cancer management.


Asunto(s)
Autofagia/genética , Carcinogénesis/genética , Neoplasias/genética , ARN no Traducido/genética , Progresión de la Enfermedad , Humanos , Neoplasias/patología
13.
J Biol Chem ; 285(33): 25570-81, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20529838

RESUMEN

Gossypol, a natural Bcl-2 homology domain 3 mimetic compound isolated from cottonseeds, is currently being evaluated in clinical trials. Here, we provide evidence that gossypol induces autophagy followed by apoptotic cell death in both the MCF-7 human breast adenocarcinoma and HeLa cell lines. We first show that knockdown of the Bcl-2 homology domain 3-only protein Beclin 1 reduces gossypol-induced autophagy in MCF-7 cells, but not in HeLa cells. Gossypol inhibits the interaction between Beclin 1 and Bcl-2 (B-cell leukemia/lymphoma 2), antagonizes the inhibition of autophagy by Bcl-2, and hence stimulates autophagy. We then show that knockdown of Vps34 reduces gossypol-induced autophagy in both cell lines, and consistent with this, the phosphatidylinositol 3-phosphate-binding protein WIPI-1 is recruited to autophagosomal membranes. Further, Atg5 knockdown also reduces gossypol-mediated autophagy. We conclude that gossypol induces autophagy in both a canonical and a noncanonical manner. Notably, we found that gossypol-mediated apoptotic cell death was potentiated by treatment with the autophagy inhibitor wortmannin or with small interfering RNA against essential autophagy genes (Vps34, Beclin 1, and Atg5). Our findings support the notion that gossypol-induced autophagy is cytoprotective and not part of the cell death process induced by this compound.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Gosipol/farmacología , Proteínas de la Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/química , Androstadienos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Proteína 5 Relacionada con la Autofagia , Beclina-1 , Western Blotting , Línea Celular Tumoral , Anticonceptivos Masculinos/farmacología , Gosipol/química , Células HeLa , Humanos , Inmunoprecipitación , Proteínas de la Membrana/genética , Microscopía Electrónica , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/fisiología , Wortmanina
14.
Cells ; 10(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34831207

RESUMEN

Cancer stem cells (CSCs) are a distinct subpopulation of tumor cells with stem cell-like features. Able to initiate and sustain tumor growth and mostly resistant to anti-cancer therapies, they are thought responsible for tumor recurrence and metastasis. Recent accumulated evidence supports that iron metabolism with the recent discovery of ferroptosis constitutes a promising new lead in the field of anti-CSC therapeutic strategies. Indeed, iron uptake, efflux, storage and regulation pathways are all over-engaged in the tumor microenvironment suggesting that the reprogramming of iron metabolism is a crucial occurrence in tumor cell survival. In particular, recent studies have highlighted the importance of iron metabolism in the maintenance of CSCs. Furthermore, the high concentration of iron found in CSCs, as compared to non-CSCs, underlines their iron addiction. In line with this, if iron is an essential macronutrient that is nevertheless highly reactive, it represents their Achilles' heel by inducing ferroptosis cell death and therefore providing opportunities to target CSCs. In this review, we first summarize our current understanding of iron metabolism and its regulation in CSCs. Then, we provide an overview of the current knowledge of ferroptosis and discuss the role of autophagy in the (regulation of) ferroptotic pathways. Finally, we discuss the potential therapeutic strategies that could be used for inducing ferroptosis in CSCs to treat cancer.


Asunto(s)
Ferroptosis , Hierro/metabolismo , Células Madre Neoplásicas/patología , Animales , Autofagia , Humanos , Modelos Biológicos , Terapia Molecular Dirigida
15.
Front Cell Dev Biol ; 9: 707049, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395434

RESUMEN

OBJECTIVES: Circular RNA (circRNA) is a novel class of RNA, which exhibits powerful biological function in regulating cellular fate of various tumors. Previously, we had demonstrated that over-expression of circRNA circCDYL promoted progression of HER2-negative (HER2-) breast cancer via miR-1275-ULK1/ATG7-autophagic axis. However, the role of circCDYL in HER2-positive (HER2+) breast cancer, in particular its role in modulating cell proliferation, one of the most important characteristics of cellular fate, is unclear. MATERIALS AND METHODS: qRT-PCR and in situ hybridization analyses were performed to examine the expression of circCDYL and miR-92b-3p in breast cancer tissues or cell lines. The biological function of circCDYL and miR-92b-3p were assessed by plate colony formation and cell viability assays and orthotopic animal models. In mechanistic study, circRNAs pull-down, RNA immunoprecipitation, dual luciferase report, western blot, immunohistochemical and immunofluorescence staining assays were performed. RESULTS: CircCDYL was high-expressed in HER2+ breast cancer tissue, similar with that in HER2- breast cancer tissue. Silencing HER2 gene had no effect on expression of circCDYL in HER2+ breast cancer cells. Over-expression of circCDYL promoted proliferation of HER2+ breast cancer cells but not through miR-1275-ULK1/ATG7-autophagic axis. CircRNA pull down and miRNA deep-sequencing demonstrated the binding of miR-92b-3p and circCDYL. Interestingly, circCDYL did not act as miR-92b-3p sponge, but was degraded in miR-92b-3p-dependent silencing manner. Clinically, expression of circCDYL and miR-92b-3p was associated with clinical outcome of HER2+ breast cancer patients. CONCLUSION: MiR-92b-3p-dependent cleavage of circCDYL was an essential mechanism in regulating cell proliferation of HER2+ breast cancer cells. CircCDYL was proved to be a potential therapeutic target for HER2+ breast cancer, and both circCDYL and miR-92b-3p might be potential biomarkers in predicting clinical outcome of HER2+ breast cancer patients.

16.
Am J Physiol Cell Physiol ; 298(4): C776-85, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20089931

RESUMEN

Macroautophagy is a vacuolar degradation pathway that terminates in the lysosomal compartment after formation of a cytoplasmic vacuole or autophagosome that engulfs macromolecules and organelles. The identification of ATG (autophagy-related) genes that are involved in the formation of autophagosomes has greatly increased our knowledge of the molecular basis of macroautophagy, and its roles in cell function, which extend far beyond degradation and quality control of the cytoplasm. Macroautophagy, which plays a major role in tissue homeostasis, is now recognized as contributing to innate and adaptive immune responses. Recently, several mediators of apoptosis have been shown to control macroautophagy. Deciphering the cross talk between macroautophagy and apoptosis probably should help increase understanding of the role of macroautophagy in human disease and is likely to be of therapeutic importance.


Asunto(s)
Autofagia/fisiología , Enfermedad , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Homeostasis , Humanos , Inmunidad/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Fagosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Ubiquitinas/metabolismo
17.
Biochem Biophys Res Commun ; 378(1): 21-6, 2009 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18992712

RESUMEN

The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) offers promising therapeutic potential based on its ability to induce apoptosis in various cancer cell lines without obvious adverse effect to normal cells. However, the mechanism of the differential sensitivity towards TRAIL-induced apoptosis remains unclear. Here, we demonstrate that caveolin-1 directly regulated TRAIL-induced apoptosis in HepG2 cells. ShRNA-mediated caveolin knockdown sensitized TRAIL-induced apoptosis and disruption of caveolae structure by the cholesterol-extracting reagent, methyl-beta-cyclodextrin (MCD), enhanced TRAIL-induced apoptosis. Over-expression of caveolin-1 partially blocked TRAIL-induced apoptosis. The engagement of TRAIL with its receptor DR4 reduced the localization of DR4 in caveolae and resulted in its internalization. Blockade of caveolae-mediated internalization of DR4 by filipin III effectively enhanced TRAIL-induced apoptosis. Collectively, our results reveal a new mechanism by which caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular/metabolismo , Caveolina 1/metabolismo , Neoplasias Hepáticas/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Caveolina 1/genética , Línea Celular Tumoral , Humanos , ARN Interferente Pequeño/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Receptores del Factor de Necrosis Tumoral/metabolismo
18.
Clin Cancer Res ; 14(21): 6751-60, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18980968

RESUMEN

PURPOSE: Both CD44 and CD133 were reported as putative markers for isolating colorectal cancer stem cells (CSC). It remains to be resolved if both of these markers are of functional importance for colorectal CSC. EXPERIMENTAL DESIGN: The expression of CD44 and CD133 in normal colonic tissues and primary colorectal cancer was assessed by immunohistochemistry in a series of 60 patients on tissue microarray sections. Both in vitro clonogenic and in vivo tumorigenic assay were applied to measure CSC activities from the cells isolated from patients. Lentiviral RNA interference was used to stably knock down CD44 or CD133 in colorectal cancer cells from patients. RESULTS: We found that CD44(+) cells displayed clustered growth and they did not colocalize with CD133(+) cells within colorectal cancer. As few as 100 CD44(+) cells from a patients' tumor initiated a xenograft tumor in vivo. A single CD44(+) cell from a tumor could form a sphere in vitro which has characteristic stem cell properties and was able to generate a xenograft tumor resembling the properties of the primary tumor. Knockdown of CD44, but not CD133, strongly prevented clonal formation and inhibited tumorigenicity in xenograft model. CONCLUSIONS: These results indicate that CD44 is a robust marker and is of functional importance for colorectal CSC for cancer initiation.


Asunto(s)
Antígenos CD/análisis , Biomarcadores de Tumor/análisis , Neoplasias Colorrectales/metabolismo , Glicoproteínas/análisis , Receptores de Hialuranos/análisis , Células Madre Neoplásicas/metabolismo , Péptidos/análisis , Antígeno AC133 , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Interferencia de ARN
19.
Pharmacol Ther ; 184: 13-41, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29080702

RESUMEN

Despite advances in neurosurgical techniques and radio-/chemotherapy, the treatment of brain tumors remains a challenge. This is particularly true for the most frequent and fatal adult brain tumor, glioblastoma (GB). Upon diagnosis, the average survival time of GB patients remains only approximately 15months. The alkylating drug temozolomide (TMZ) is routinely used in brain tumor patients and induces apoptosis, autophagy and unfolded protein response (UPR). Here, we review these cellular mechanisms and their contributions to TMZ chemoresistance in brain tumors, with a particular emphasis on TMZ chemoresistance in glioma stem cells and GB.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Humanos , Modelos Biológicos , Células Madre Neoplásicas/efectos de los fármacos , Temozolomida/farmacología , Temozolomida/uso terapéutico
20.
FASEB J ; 20(12): 2147-9, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16935937

RESUMEN

Cells without Bak and Bax are largely resistant to apoptosis, despite the presence of other key components of the apoptotic machinery. We screened 7,800 natural compounds and found several that could specifically induce caspase activation and the release of cytochrome c (cyto c) in the bak(-/-)/bax(-/-) cells. One of these was gossypol, a polyphenolic compound naturally found in cottonseed that has been used in antifertility trials. We found that gossypol, but not other Bcl-2-interacting molecules, induced cyto c release and loss of mitochondrial membrane potential (delta psi m) independently of mPTP and Bak/Bax activation. Furthermore, we found that gossypol induced an allosteric change in Bcl-2 in both bak(-/-)/bax(-/-) cells and Bcl-2 overexpressing cells. This change in Bcl-2 conformation led to the release of cyto c in the presence of Bcl-2 and Bcl-xL in reconstituted proteoliposomes. We also observed that gossypol substantially reduced the growth of tumor xenografts from Bcl-2 overexpressing cells in nude mice. We conclude that gossypol converts the antiapoptotic molecule Bcl-2 into a proapoptotic molecule that can mediate the release of cyto c and induce apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Citocromos c/metabolismo , Gosipol/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Animales , Antineoplásicos/uso terapéutico , Liposomas , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Conformación Proteica , Proteínas Proto-Oncogénicas c-bcl-2/química , Carga Tumoral/efectos de los fármacos , Proteína X Asociada a bcl-2 , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA