Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Chemistry ; 30(21): e202400116, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38318755

RESUMEN

Linearly fused polycyclic piperidines represent common substructures in natural products and biologically active small molecules. We have devised a Pd-catalyzed annulation strategy to these compounds that converts readily available 2-tetralones and indanones into these scaffolds with the potential for control of both enantio- and diastereoselectivity. Importantly, these compounds can be chemoselectively functionalized, providing an efficient and robust methodology to these important nitrogen-containing molecules.

2.
Org Biomol Chem ; 22(8): 1602-1607, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38314915

RESUMEN

Kinetic resolution of N-Boc-spirocyclic 2-arylpiperidines with spiro substitution at C-4 was achieved with high enantiomeric ratios using the chiral base n-BuLi/sparteine. Cyclopropanation or metallaphotoredox catalysis were used to access the piperidines, which could be further functionalised without loss of enantiopurity, highlighting their use as potential 3D fragments for drug discovery.

3.
J Am Chem Soc ; 145(22): 12124-12135, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37235775

RESUMEN

Hydroxycarbenes can be generated and structurally characterized in the gas phase by collision-induced decarboxylation of α-keto carboxylic acids, followed by infrared ion spectroscopy. Using this approach, we have shown earlier that quantum-mechanical hydrogen tunneling (QMHT) accounts for the isomerization of a charge-tagged phenylhydroxycarbene to the corresponding aldehyde in the gas phase and above room temperature. Herein, we report the results of our current study on aliphatic trialkylammonio-tagged systems. Quite unexpectedly, the flexible 3-(trimethylammonio)propylhydroxycarbene turned out to be stable─no H-shift to either aldehyde or enol occurred. As supported by density functional theory calculations, this novel QMHT inhibition is due to intramolecular H-bonding of a mildly acidic α-ammonio C-H bonds to the hydroxyl carbene's C-atom (C:···H-C). To further support this hypothesis, (4-quinuclidinyl)hydroxycarbenes were synthesized, whose rigid structure prevents this intramolecular H-bonding. The latter hydroxycarbenes underwent "regular" QMHT to the aldehyde at rates comparable to, e.g., methylhydroxycarbene studied by Schreiner et al. While QMHT has been shown for a number of biological H-shift processes, its inhibition by H-bonding disclosed here may serve for the stabilization of highly reactive intermediates such as carbenes, even as a mechanism for biasing intrinsic selectivity patterns.

4.
Chemistry ; 29(36): e202300815, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37067465

RESUMEN

Highly enantiomerically enriched dihydrohydroquinolines were prepared in two steps from quinoline. Addition of aryllithiums to quinoline with tert-butoxycarbonyl (Boc) protection gave N-Boc-2-aryl-1,2-dihydroquinolines. These were treated with n-butyllithium and electrophilic trapping occurred exclusively at C-4 of the dihydroquinoline, a result supported by DFT studies. Variable temperature NMR spectroscopy gave kinetic data for the barrier to rotation of the carbonyl group (ΔG≠ ≈49 kJ mol-1 , 195 K). Lithiation using the diamine sparteine allowed kinetic resolutions with high enantioselectivities (enantiomer ratio up to 99 : 1). The enantioenriched 1,2-dihydroquinolines could be converted to 1,4-dihydroquinolines with retention of stereochemistry. Further functionalisation led to trisubstituted products. Reduction provided enantioenriched tetrahydroquinolines, whereas acid-promoted removal of Boc led to quinolines, and this was applied to a synthesis of the antimalarial compound M5717.

5.
J Org Chem ; 87(13): 8819-8823, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35699313

RESUMEN

The base n-BuLi with sparteine allows a kinetic resolution of N-Boc-2-aryl-4-methylenepiperidines. The 2,2-disubstituted products and recovered starting materials were isolated with high enantiomeric ratios. From VT-NMR spectroscopy and DFT studies, the rate of rotation of the N-Boc group is fast. Lithiation and trapping of the enantioenriched starting materials gave 2,2-disubstituted piperidines with retention of stereochemistry. Functionalization of the 4-methylene group led to a variety of 2,4-disubstituted piperidines without loss of enantiopurity that could be useful building blocks for drug discovery.


Asunto(s)
Esparteína , Cinética , Espectroscopía de Resonancia Magnética , Piperidinas/química , Esparteína/química , Estereoisomerismo
6.
J Phys Chem A ; 126(34): 5853-5863, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35976118

RESUMEN

New correlation consistent basis sets for the second-row atoms (Al-Ar) to be used with the neon-core correlation consistent effective core potentials (ccECPs) have been developed. The basis sets, denoted cc-pV(n+d)Z-ccECP (n = D, T, Q), include the "tight"-d functions that are known to be important for second-row elements. Sets augmented with additional diffuse functions are also reported. Effective core polarization potentials (CPPs) to account for the effect of core-valence correlation have been adjusted for the same elements, and two different forms of the CPP cutoff function have been analyzed. The accuracy of both the basis sets and the CPPs is assessed through benchmark calculations at the coupled-cluster level of theory for atomic and molecular properties. Agreement with all-electron results is much improved relative to the basis sets that originally accompanied the ccECPs; moreover, the combination of cc-pV(n+d)Z-ccECP and CPPs is found to be a computationally efficient and accurate alternative to including core electrons in the correlation treatment.

7.
J Am Chem Soc ; 143(48): 20442-20453, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808044

RESUMEN

With the aim of developing photostable near-infrared cell imaging probes, a convenient route to the synthesis of heteroleptic OsII complexes containing the Os(TAP)2 fragment is reported. This method was used to synthesize the dinuclear OsII complex, [{Os(TAP)2}2tpphz]4+ (where tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2''-h:2‴,3'''-j]phenazine and TAP = 1,4,5,8- tetraazaphenanthrene). Using a combination of resonance Raman and time-resolved absorption spectroscopy, as well as computational studies, the excited state dynamics of the new complex were dissected. These studies revealed that, although the complex has several close lying excited states, its near-infrared, NIR, emission (λmax = 780 nm) is due to a low-lying Os → TAP based 3MCLT state. Cell-based studies revealed that unlike its RuII analogue, the new complex is neither cytotoxic nor photocytotoxic. However, as it is highly photostable as well as live-cell permeant and displays NIR luminescence within the biological optical window, its properties make it an ideal probe for optical microscopy, demonstrated by its use as a super-resolution NIR STED probe for nuclear DNA.


Asunto(s)
Complejos de Coordinación/química , ADN/análisis , Sustancias Luminiscentes/química , Animales , Bovinos , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Humanos , Sustancias Luminiscentes/síntesis química , Sustancias Luminiscentes/toxicidad , Microscopía Confocal , Osmio/química , Osmio/toxicidad
8.
Chemistry ; 27(45): 11670-11675, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34110662

RESUMEN

Kinetic resolution of 2-arylindolines (2,3-dihydroindoles) was achieved by treatment of their N-tert-butoxycarbonyl (Boc) derivatives with n-butyllithium and sparteine in toluene at -78 °C followed by electrophilic quench. The unreacted starting materials together with the 2,2-disubstituted products could be isolated with high enantiomer ratios. Variable temperature NMR spectroscopy showed that the rate of Boc rotation was fast (ΔG≠ ≈57 kJ/mol at 195 K). This was corroborated by DFT studies and by in situ ReactIR spectroscopy. The enantioenriched N-Boc-2-arylindolines were converted to 2,2-disubstituted products without significant loss in enantiopurity. Hence, either enantiomer of the 2,2-disubstituted products could be obtained with high selectivity from the same enantiomer of the chiral ligand sparteine (one from the kinetic resolution and the other from subsequent lithiation-trapping of the recovered starting material). Secondary amine products were prepared by removing the Boc group with acid to provide a way to access highly enantioenriched 2-aryl and 2,2-disubstituted indolines.


Asunto(s)
Esparteína , Indoles , Cinética , Estereoisomerismo
9.
Chemistry ; 27(8): 2662-2669, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32893891

RESUMEN

Breslow intermediates (BIs) are the crucial nucleophilic amino enol intermediates formed from electrophilic aldehydes in the course of N-heterocyclic carbene (NHC)-catalyzed umpolung reactions. Both in organocatalytic and enzymatic umpolung, the question whether the Breslow intermediate exists as the nucleophilic enol or in the form of its electrophilic keto tautomer is of utmost importance for its reactivity and function. Herein, the preparation of charge-tagged Breslow intermediates/keto tautomers derived from three different types of NHCs (imidazolidin-2-ylidenes, 1,2,4-triazolin-5-ylidenes, thiazolin-2-ylidenes) and aldehydes is reported. An ammonium charge tag is introduced through the aldehyde unit or the NHC. ESI-MS IR ion spectroscopy allowed the unambiguous conclusion that in the gas phase, the imidazolidin-2-ylidene-derived BI indeed exists as a diamino enol, while both 1,2,4-triazolin-5-ylidenes and thiazolin-2-ylidenes give the keto tautomer. This result coincides with the tautomeric states observed for the BIs in solution (NMR) and in the crystalline state (XRD), and is in line with our earlier calculations on the energetics of BI keto-enol equilibria.

10.
J Am Chem Soc ; 142(2): 1101-1111, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31846306

RESUMEN

The synthesis of new dinuclear complexes containing linked RuII(dppz) and ReI(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a N,N'-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported RuII/ReI complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties. Quantum-based DFT calculations on these systems offer insights into these effects. While both complexes are live cells permeant, their intracellular localizations are significantly affected by the nature of the linker. Notably, one of the complexes displayed concentration-dependent localization and possesses photophysical properties that are compatible with SIM and STED nanoscopy. This allowed the dynamics of its intracellular localization to be tracked at super resolutions.


Asunto(s)
Complejos de Coordinación/química , Medicina de Precisión , Renio/química , Compuestos de Rutenio/química , Línea Celular , Humanos , Ligandos , Estructura Molecular , Espectrofotometría Ultravioleta
11.
Phys Chem Chem Phys ; 21(30): 16591-16600, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31317140

RESUMEN

A charge-tagged phenyl pyruvic acid derivative was investigated by tandem-MS, infrared (IR) ion spectroscopy and theory. The tailor-made precursor ions efficiently lose CO2 in collision induced dissociation (CID) experiments, offering access to study the secondary decay reactions of the product ions. IR ion spectroscopy provides evidence for the formation of an enol acid precursor ion structure in the gas phase and indicates the presence of enol products formed after CO2 loss. Extensive DFT computations however, suggest intermediate generation of hydroxycarbene products, which in turn rearrange in a secondary process to the enol ions detected by IR ion spectroscopy. Quantum mechanical tunneling of the hydroxycarbene can be excluded since no evidence for aldehyde product ion formation could be found. This finding is in contrast to the behavior of methylhydroxycarbene, which cleanly penetrates the energy barrier to form exclusively acetaldehyde at cryogenic temperatures in an argon matrix via quantum mechanical hydrogen tunneling. The results presented here are attributed to the highly excited energy levels of the product ions formed by CID in combination with different barrier heights of the competing reaction channels, which allow exclusive access over one energy barrier leading to the formation of the enol tautomer ions observed.

12.
Chemistry ; 24(68): 17986-17996, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30222223

RESUMEN

The modular structure of metal-organic framework nanosheets (MONs) provides a convenient route to creating two-dimensional materials with readily tuneable surface properties. Here, the liquid exfoliation of two closely related layered metal-organic frameworks functionalised with either methoxy-propyl (1) or pentyl (2) pendent groups intended to bestow either hydrophilic or hydrophobic character to the resulting nanosheets is reported. Exfoliation of the two materials in a range of different solvents highlighted significant differences in their dispersion properties, as well as their molecular and nanoscopic structures. Exchange or loss of solvent was found to occur at the labile axial position of the paddle-wheel based MONs and DFT calculations indicated that intramolecular coordination by the oxygen of the methoxy-propyl pendant groups may take place. The nanoscopic dimensions of the MONs were further tuned by varying the exfoliation conditions and through "liquid cascade centrifugation". Aqueous suspensions of the nanosheets were used as sensors to detect aromatic heterocycles with clear differences in binding behaviour observed and quantified.

13.
Inorg Chem ; 57(21): 13201-13212, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351084

RESUMEN

The series of complexes [Os(bpy)3- n(pytz) n][PF6]2 (bpy = 2,2'-bipyridyl, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole, 1 n = 0, 2 n = 1, 3 n = 2, 4 n = 3) were prepared and characterized and are rare examples of luminescent 1,2,3-triazole-based osmium(II) complexes. For 3 we present an attractive and particularly mild preparative route via an osmium(II) η6-arene precursor circumventing the harsh conditions that are usually required. Because of the high spin-orbit coupling constant associated with the Os(II) center the absorption spectra of the complexes all display absorption bands of appreciable intensity in the range of 500-700 nm corresponding to spin-forbidden ground-state-to-3MLCT transitions (MLCT = metal-to-ligand charge transfer), which occur at significantly lower energies than the corresponding spin-allowed 1MLCT transitions. The homoleptic complex 4 is a bright emitter (λmaxem = 614 nm) with a relatively high quantum yield of emission of ∼40% in deoxygenated acetonitrile solutions at room temperature. Water-soluble chloride salts of 1-4 were also prepared, all of which remain emissive in aerated aqueous solutions at room temperature. The complexes were investigated for their potential as phosphorescent cellular imaging agents, whereby efficient excitation into the 3MLCT absorption bands at the red side of the visible range circumvents autofluorescence from biological specimens, which do not absorb in this region of the spectrum. Confocal microscopy reveals 4 to be readily taken up by cancer cell lines (HeLa and EJ) with apparent lysosomal and endosomal localization, while toxicity assays reveal that the compounds have low dark and light toxicity. These complexes therefore provide an excellent platform for the development of efficient luminescent cellular imaging agents with advantageous photophysical properties that enable excitation and emission in the biologically transparent region of the optical spectrum.


Asunto(s)
Complejos de Coordinación/química , Sustancias Luminiscentes/química , Imagen Óptica , Osmio/química , Piridinas/química , Triazoles/química , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Células HeLa , Humanos , Sustancias Luminiscentes/síntesis química , Sustancias Luminiscentes/farmacología , Mediciones Luminiscentes , Estructura Molecular , Procesos Fotoquímicos , Teoría Cuántica , Células Tumorales Cultivadas
14.
J Am Chem Soc ; 139(16): 5779-5786, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28282985

RESUMEN

While hydrogen tunneling at elevated temperatures has, for instance, often been postulated in biochemical processes, spectroscopic proof is thus far limited to cryogenic conditions, under which thermal reactivity is negligible. We report spectroscopic evidence for H-tunneling in the gas phase at temperatures around 320-350 K observed in the isomerization reaction of a hydroxycarbene into an aldehyde. The charge-tagged carbene was generated in situ in a tandem mass spectrometer by decarboxylation of oxo[4-(trimethylammonio)phenyl]acetic acid upon collision induced dissociation. All ion structures involved are characterized by infrared ion spectroscopy and quantum chemical calculations. The charge-tagged phenylhydroxycarbene undergoes a 1,2-H-shift to the corresponding aldehyde with an half-life of about 10 s, evidenced by isomer-selective two-color (IR-IR) spectroscopy. In contrast, the deuterated (OD) carbene analogue showed much reduced 1,2-D-shift reactivity with an estimated half-life of at least 200 s under the experimental conditions, and provides clear evidence for hydrogen atom tunneling in the H-isotopologue. This is the first spectroscopic confirmation of hydrogen atom tunneling governing 1,2-H-shift reactions at noncryogenic temperatures, which is of broad significance for a range of (bio)chemical processes, including enzymatic transformations and organocatalysis.

15.
Chemistry ; 23(72): 18239-18251, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29029366

RESUMEN

Modification of light-harvesting units with anchoring groups for surface attachment often compromises light-harnessing properties. Herein, a series of [donor-acceptor-anchor] platinum(II) diimine (bis-)acetylides was developed in order to systematically compare the effect of conjugated versus electronically decoupled modes of attachment of protected anchoring groups on the photophysical properties of light-harvesting units. The first examples of "decoupled" phosphonate diimine PtII complexes are reported, and their properties are compared and contrasted to those of carboxylate analogues studied by a diversity of methods. Ultrafast time-resolved IR and transient absorption spectroscopy revealed that all complexes have a charge-transfer (CT) lowest excited state with lifetimes between 2 and 14 ns. Vibrational signatures and dynamics of CT states were identified; the assignment of electronic states and their vibrational origin was aided by TDDFT calculations. Ultrafast energy redistribution accompanied by structural changes was directly captured in the CT states. A significant difference between the structures of the electronic ground and CT excited states, as well as differences in the structural reorganisation in the complexes bearing directly attached or electronically decoupled anchoring groups, was discovered. This work demonstrates that decoupling of the anchoring group from the light-harvesting core by a saturated spacer is an easy approach to combine surface attachment with high reduction potential and ten times longer lifetime of the CT excited state of the light-absorbing unit, and retain electron-transfer photoreactivity essential for light-harvesting applications.

16.
Phys Chem Chem Phys ; 19(34): 23362-23372, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28825745

RESUMEN

l-Ergothioneine (ET) is a sulfur-containing derivative of the amino acid histidine that offers unique antioxidant properties. The enzyme independent redox-chemistry of ET relies on the availability of the thiol tautomer to allow oxidative formation of disulfide bridges, i.e., the tautomeric equilibrium. To study the intrinsic properties of ET the tautomeric equilibrium is studied in the gas-phase by infrared multiphoton dissociation (IRMPD) spectroscopy. The IR ion spectra of isolated molecular ions of ET and of the biosynthetic precursors of ET, i.e., hercynine and Nε-methyl-hercynine are acquired. The analyte structures are independently investigated by density functional theory (DFT) and computed linear IR-spectra of tautomer ion structures are compared with the gas-phase spectra for identification. For the molecular ion of ET the simulated IR spectra of thione and thiol structures match the recorded IRMPD spectrum and that prevents an individual structure assignment. On the other hand, theory suggests that ET adopts a thione tautomer in MeOH solution which could be carried over from the condensed phase to gas phase and could be kinetically trapped after effective electrospray phase transfer and desolvation. Such a non-thermal behavior is also found for the molecular ions of protonated hercynine and Nε-methyl-hercynine. Contrary to that, the sodium complex ions of ET, hercynine and Nε-methyl-hercynine adopt the respective ground structures predicted by theory, which are reliably identified spectroscopically. For ET the thione tautomer is by far the most stable isomer in the sodium complex molecular ion.

18.
Chemistry ; 22(17): 5996-6000, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27000412

RESUMEN

Although metal-ion-directed self-assembly has been widely used to construct a vast number of macrocycles and cages, it is only recently that the biological properties of these systems have begun to be explored. However, up until now, none of these studies have involved intrinsically photoexcitable self-assembled structures. Herein we report the first metallomacrocycle that functions as an intracellular singlet oxygen sensitizer. Not only does this Ru2 Re2 system possess potent photocytotoxicity at light fluences below those used for current medically employed systems, it offers an entirely new paradigm for the construction of sensitizers for photodynamic therapy.


Asunto(s)
Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química , Fotoquímica
19.
Inorg Chem ; 55(17): 8251-3, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27504991

RESUMEN

Asymmetric isotopic labeling of parallel and identical electron- or energy-transfer pathways in symmetrical molecular assemblies is an extremely challenging task owing to the inherent lack of isotopic selectivity in conventional synthetic methods. Yet, it would be a highly valuable tool in the study and control of complex light-matter interactions in molecular systems by exclusively and nonintrusively labeling one of otherwise identical reaction pathways, potentially directing charge and energy transport along a chosen path. Here we describe the first selective synthetic route to asymmetrically labeled organometallic compounds, on the example of charge-transfer platinum(II) cis-acetylide complexes. We demonstrate the selective (13)C labeling of one of two acetylide groups. We further show that such isotopic labeling successfully decouples the two ν(C≡C) in the mid-IR region, permitting independent spectroscopic monitoring of two otherwise identical electron-transfer pathways, along the (12)C≡(12)C and (13)C≡(13)C coordinates. Quantum-mechanical mixing leads to intriguing complex features in the vibrational spectra of such species, which we successfully model by full-dimensional anharmonically corrected DFT calculations, despite the large size of these systems. The synthetic route developed and demonstrated herein should lead to a great diversity of asymmetric organometallic complexes inaccessible otherwise, opening up a plethora of opportunities to advance the fundamental understanding and control of light-matter interactions in molecular systems.

20.
Inorg Chem ; 55(24): 12568-12582, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989199

RESUMEN

Manganese tricarbonyl bromide complexes incorporating IP (2-(phenylimino)pyridine) derivatives, [MnBr(CO)3(IP)], are demonstrated as a new group of catalysts for CO2 reduction, which represent the first example of utilization of (phenylimino)pyridine ligands on manganese centers for this purpose. The key feature is the asymmetric structure of the redox-noninnocent ligand that permits independent tuning of its steric and electronic properties. The α-diimine ligands and five new Mn(I) compounds have been synthesized, isolated in high yields, and fully characterized, including X-ray crystallography. Their electrochemical and electrocatalytic behavior was investigated using cyclic voltammetry and UV-vis-IR spectroelectrochemistry within an OTTLE cell. Mechanistic investigations under an inert atmosphere have revealed differences in the nature of the reduction products as a function of steric bulk of the ligand. The direct ECE (electrochemical-chemical-electrochemical) formation of a five-coordinate anion [Mn(CO)3(IP)]-, a product of two-electron reduction of the parent complex, is observed in the case of the bulky DIPIMP (2-[((2,6-diisopropylphenyl)imino)methyl]pyridine), TBIMP (2-[((2-tert-butylphenyl)imino)methyl]pyridine), and TBIEP (2-[((2-tert-butylphenyl)imino)ethyl]pyridine) derivatives. This process is replaced for the least sterically demanding IP ligand in [MnBr(CO)3(IMP)] (2-[(phenylimino)methyl]pyridine) by the stepwise formation of such a monoanion via an ECEC(E) mechanism involving also the intermediate Mn-Mn dimer [Mn(CO)3(IMP)]2. The complex [MnBr(CO)3(IPIMP)] (2-[((2-diisopropylphenyl)imino)methyl]pyridine), which carries a moderately electron donating, moderately bulky IP ligand, shows an intermediate behavior where both the five-coordinate anion and its dimeric precursor are jointly detected on the time scale of the spectroelectrochemical experiments. Under an atmosphere of CO2 the studied complexes, except for the DIPIMP derivative, rapidly coordinate CO2, forming stable bicarbonate intermediates, with no dimer being observed. Such behavior indicates that the CO2 binding is outcompeting another pathway: viz., the dimerization reaction between the five-coordinate anion and the neutral parent complex. The bicarbonate intermediate species undergo reduction at more negative potentials (ca. -2.2 V vs Fc/Fc+), recovering [Mn(CO)3(IP)]- and triggering the catalytic production of CO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA