Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Blood ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133931

RESUMEN

Fluorescence in situ hybridization (FISH) using break-apart probes is recommended for identifying high-grade B-cell lymphoma with MYC and BCL2 rearrangements (HGBCL-DH-BCL2). Unbalanced MYC break-apart patterns, where the red or green signal is lost, are commonly reported as an equivocal result by clinical laboratories. In a cohort of 297 HGBCL-DH-BCL2, 13% of tumors had unbalanced MYC break-apart patterns with loss of red (LR: 2%) or green (LG: 11%) signal. To determine the significance of these patterns, MYC rearrangements were characterized by sequencing in 130 HGBCL-DH-BCL2, including 3 LR and 14 LG tumors. A MYC rearrangement was identified for 71% of tumors with LR or LG patterns, with the majority involving immunoglobulin loci or other recurrent MYC rearrangement partners. The architecture of these rearrangements consistently preserved the rearranged MYC allele, with the MYC gene predicted to be on the derivative chromosome containing the signal that is still present in nearly all cases. MYC protein expression, MYC mRNA expression, and the proportion of tumors expressing the dark zone signature was not significantly different between balanced and unbalanced groups. These results support a recommendation that unbalanced MYC break-apart FISH patterns be reported as positive for MYC rearrangement in the context of diagnosing HGBCL-DH-BCL2.

2.
Blood ; 144(5): 525-540, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701426

RESUMEN

ABSTRACT: Rearrangements that place the oncogenes MYC, BCL2, or BCL6 adjacent to superenhancers are common in mature B-cell lymphomas. Lymphomas with diffuse large B-cell lymphoma (DLBCL) or high-grade morphology with both MYC and BCL2 rearrangements are classified as high-grade B-cell lymphoma with MYC and BCL2 rearrangements ("double hit"; HGBCL-DH-BCL2) and are associated with aggressive disease and poor outcomes. Although it is established that MYC rearrangements involving immunoglobulin (IG) loci are associated with inferior outcomes relative to those involving other non-IG superenhancers, the frequency of and mechanisms driving IG vs non-IG MYC rearrangements have not been elucidated. Here, we used custom targeted capture and/or whole-genome sequencing to characterize oncogene rearrangements across 883 mature B-cell lymphomas including Burkitt lymphoma, follicular lymphoma, DLBCL, and HGBCL-DH-BCL2 tumors. We demonstrate that, although BCL2 rearrangement topology is consistent across entities, HGBCL-DH-BCL2 have distinct MYC rearrangement architecture relative to tumors with single MYC rearrangements or with both MYC and BCL6 rearrangements (HGBCL-DH-BCL6), including both a higher frequency of non-IG rearrangements and different architecture of MYC::IGH rearrangements. The distinct MYC rearrangement patterns in HGBCL-DH-BCL2 occur on the background of high levels of somatic hypermutation across MYC partner loci in HGBCL-DH-BCL2, creating more opportunity to form these rearrangements. Furthermore, because 1 IGH allele is already disrupted by the existing BCL2 rearrangement, the MYC rearrangement architecture in HGBCL-DH-BCL2 likely reflects selective pressure to preserve both BCL2 and B-cell receptor expression. These data provide new mechanistic explanations for the distinct patterns of MYC rearrangements observed across different lymphoma entities.


Asunto(s)
Reordenamiento Génico , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-myc , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-myc/genética , Linfoma de Células B/genética , Linfoma de Células B/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología
3.
Clin Chem ; 70(1): 273-284, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175592

RESUMEN

BACKGROUND: Somatic hypermutation (SHM) status of the immunoglobulin heavy variable (IGHV) gene plays a crucial role in determining the prognosis and treatment of patients with chronic lymphocytic leukemia (CLL). A common approach for determining SHM status is multiplex polymerase chain reaction and Sanger sequencing of the immunoglobin heavy locus; however, this technique is low throughput, is vulnerable to failure, and does not allow multiplexing with other diagnostic assays. METHODS: Here we designed and validated a DNA targeted capture approach to detect immunoglobulin heavy variable somatic hypermutation (IGHV SHM) status as a submodule of a larger next-generation sequencing (NGS) panel that also includes probes for ATM, BIRC3, CHD2, KLHL6, MYD88, NOTCH1, NOTCH2, POT1, SF3B1, TP53, and XPO1. The assay takes as input FASTQ files and outputs a report containing IGHV SHM status and V allele usage following European Research Initiative on CLL guidelines. RESULTS: We validated the approach on 35 CLL patient samples, 34 of which were characterized using Sanger sequencing. The NGS panel identified the IGHV SHM status of 34 of 35 CLL patients. We showed 100% sensitivity and specificity among the 33 CLL samples with both NGS and Sanger sequencing calls. Furthermore, we demonstrated that this panel can be combined with additional targeted capture panels to detect prognostically important CLL single nucleotide variants, insertions/deletions, and copy number variants (TP53 copy number loss). CONCLUSIONS: A targeted capture approach to IGHV SHM detection can be integrated into broader sequencing panels, allowing broad CLL prognostication in a single molecular assay.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Hipermutación Somática de Inmunoglobulina , Humanos , Alelos , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoglobulinas , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Factores de Transcripción
4.
Am J Hematol ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152767

RESUMEN

In classical Hodgkin lymphoma (cHL), responsiveness to immune-checkpoint blockade (ICB) is associated with specific tumor microenvironment (TME) and peripheral blood features. The role of ICB in nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is not established. To gain insights into its potential in NLPHL, we compared TME and peripheral blood signatures between HLs using an integrative multiomic analysis. A discovery/validation approach in 121 NLPHL and 114 cHL patients highlighted >2-fold enrichment in programmed cell death-1 (PD-1) and T-cell Ig and ITIM domain (TIGIT) gene expression for NLPHL versus cHL. Multiplex imaging showed marked increase in intra-tumoral protein expression of PD-1+ (and/or TIGIT+) CD4+ T-cells and PD-1+CD8+ T-cells in NLPHL compared to cHL. This included T-cells that rosetted with lymphocyte predominant (LP) and Hodgkin Reed-Sternberg (HRS) cells. In NLPHL, intra-tumoral PD-1+CD4+ T-cells frequently expressed TCF-1, a marker of heightened T-cell response to ICB. The peripheral blood signatures between HLs were also distinct, with higher levels of PD-1+TIGIT+ in TH1, TH2, and regulatory CD4+ T-cells in NLPHL versus cHL. Circulating PD-1+CD4+ had high levels of TCF-1. Notably, in both lymphomas, highly expanded populations of clonal TIGIT+PD-1+CD4+ and TIGIT+PD-1+CD8+ T-cells in the blood were also present in the TME, indicating that immune-checkpoint expressing T-cells circulated between intra-tumoral and blood compartments. In in vitro assays, ICB was capable of reducing rosette formation around LP and HRS cells, suggesting that disruption of rosetting may be a mechanism of action of ICB in HL. Overall, results indicate that further evaluation of ICB is warranted in NLPHL.

5.
Bone Marrow Transplant ; 59(5): 587-596, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326567

RESUMEN

We performed a retrospective analysis on 124 patients with transfusion-dependent thalassemia who were registered in the German pediatric registry for stem cell transplantation. All patients underwent first allogeneic hematopoietic stem cell transplantation (HSCT) between 2011 and 2020 and belonged mainly to Pesaro risk class 1-2. Four-year overall (OS) and thalassemia-free survival (TFS) were 94.5% ± 2.9% and 88.0% ± 3.4% after treosulfan-fludarabine-thiotepa- and 96.9% ± 3.1% (P = 0.763) and 96.9% ± 3.1% (P = 0.155) after busulfan-fludarabine-based conditioning. Mixed chimerism below 75% occurred predominantly in treosulfan-based regimens (27.5% versus 6.2%). OS and TFS did not differ significantly between matched sibling, other matched family and matched unrelated donor (UD) HSCTs (OS: 100.0%, 100.0%, 96.3% ± 3.6%; TFS: 96.5% ± 2.4%, 90.0% ± 9.5%, 88.9% ± 6.0%). However, mismatched UD-HSCTs performed less favorable (OS: 84.7% ± 7.3% (P = 0.029); TFS: 79.9% ± 7.4% (P = 0.082)). We generated a scoring system reflecting the risk to develop mixed chimerism in our cohort. The main risk-reducing factors were a high CD3+ cell count (≥6 × 107/kg) in the graft, busulfan-conditioning, pre-conditioning therapy and low-targeted ciclosporin A trough levels. Acute GvHD grade III-IV in treosulfan-based concepts predominantly occurred in patients with UD and reduced GvHD prophylaxis but not in the context of high CD3+ cell doses. Taken together, this information might be used to develop more risk-adapted HSCT regimens for thalassemia patients.


Asunto(s)
Busulfano/análogos & derivados , Trasplante de Células Madre Hematopoyéticas , Talasemia , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Masculino , Femenino , Niño , Talasemia/terapia , Preescolar , Estudios Retrospectivos , Adolescente , Acondicionamiento Pretrasplante/métodos , Complejo CD3 , Busulfano/uso terapéutico , Busulfano/administración & dosificación , Terapia de Inmunosupresión/métodos , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA