Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Toxicol In Vitro ; 91: 105623, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37236431

RESUMEN

The pharmacokinetic (PK) profile of a drug is an essential factor in determining its efficacy, yet it is often neglected during in vitro cell culture experiments. Here, we present a system in which standard well plate cultures may be "plugged in" and perfused with PK drug profiles. Timed drug boluses or infusions are passed through a mixing chamber that simulates the PK volume of distribution specific to the desired drug. The user-specified PK drug profile generated by the mixing chamber passes through the incubated well plate culture, exposing cells to in vivo-like PK drug dynamics. The effluent stream from the culture may then optionally be fractionated and collected by a fraction collector. This low-cost system requires no custom parts and perfuses up to six cultures in parallel. This paper demonstrates a range of PK profiles the system can produce using a tracer dye, describes how to find the correct mixing chamber volumes to mimic PK profiles of drugs of interest, and presents a study exploring the effects of differing PK exposure on a model of lymphoma treatment with chemotherapy.


Asunto(s)
Técnicas de Cultivo de Célula , Farmacocinética
2.
J Vis Exp ; (185)2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35938803

RESUMEN

Certain cell and tissue functions operate within the dynamic time scale of minutes to hours that are poorly resolved by conventional culture systems. This work has developed a low-cost perfusion bioreactor system that allows culture medium to be continuously perfused into a cell culture module and fractionated in a downstream module to measure dynamics on this scale. The system is constructed almost entirely from commercially available parts and can be parallelized to conduct independent experiments in conventional multi-well cell culture plates simultaneously. This video article demonstrates how to assemble the base setup, which requires only a single multichannel syringe pump and a modified fraction collector to perfuse up to six cultures in parallel. Useful variants on the modular design are also presented that allow for controlled stimulation dynamics, such as solute pulses or pharmacokinetic-like profiles. Importantly, as solute signals travel through the system, they are distorted due to solute dispersion. Furthermore, a method for measuring the residence time distributions (RTDs) of the components of the perfusion setup with a tracer using MATLAB is described. RTDs are useful to calculate how solute signals are distorted by the flow in the multi-compartment system. This system is highly robust and reproducible, so basic researchers can easily adopt it without the need for specialized fabrication facilities.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo , Perfusión , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA