Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 62(21): 3105-3115, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37890134

RESUMEN

MppQ is an enzyme of unknown function from Streptomyces hygroscopicus (ShMppQ) that operates in the biosynthesis of the nonproteinogenic amino acid L-enduracididine (L-End). Since L-End is a component of several peptides showing activity against antibiotic-resistant pathogens, understanding its biosynthetic pathway could facilitate the development of chemoenzymatic routes to novel antibiotics. Herein, we report on the crystal structures of ShMppQ complexed with pyridoxal-5'-phosphate (PLP) and pyridoxamine-5'-phosphate (PMP). ShMppQ is similar to fold-type I PLP-dependent aminotransferases like aspartate aminotransferase. The tertiary structure of ShMppQ is composed of an N-terminal extension, a large domain, and a small domain. The active site is placed at the junction of the large and small domains and includes residues from both protomers of the homodimer. We also report the first functional characterization of MppQ, which we incubated with the enzymatically produced 2-ketoenduracidine and observed the conversion to L-End, establishing ShMppQ as the final enzyme in L-End biosynthesis. Additionally, we have observed that MppQ has a relatively high affinity for 2-keto-5-guanidinovaleric acid (i.e., 2-ketoarginine), a shunt product of MppP, indicating the potential role of MppQ in increasing the efficiency of L-End biosynthesis by converting 2-ketoarginine back to the starting material, l-arginine. A panel of potential amino-donor substrates was tested for the transamination activity against a saturating concentration of 2-ketoarginine in end-point assays. Most l-Arg was produced with l-ornithine as the donor substrate. Steady-state kinetic analysis of the transamination reaction with l-Orn and 2-ketoarginine shows that the kinetic constants are in line with those for the amino donor substrate of other fold-type I aminotransferases.


Asunto(s)
Fosfato de Piridoxal , Transaminasas , Cinética , Transaminasas/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfatos , Especificidad por Sustrato , Cristalografía por Rayos X
2.
Biochemistry ; 58(52): 5366-5380, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31478653

RESUMEN

Human isocitrate dehydrogenase 1 (HsICDH1) is a cytoplasmic homodimeric Mg(II)-dependent enzyme that converts d-isocitrate (D-ICT) and NADP+ to α-ketoglutarate (AKG), CO2, and NADPH. The active sites are formed at the subunit interface and incorporate residues from both protomers. The turnover number titrates hyperbolically from 17.5 s-1 to a minimum of 7 s-1 with an increasing enzyme concentration. As isolated, the enzyme adopts an inactive open conformation and binds NADPH tightly. The open conformation displaces three of the eight residues that bind D-ICT and Mg(II). Enzyme activation occurs with the addition of Mg(II) or D-ICT with a rate constant of 0.12 s-1. The addition of both Mg(II) and D-ICT activates the enzyme with a rate constant of 0.6 s-1 and displaces half of the bound NADPH. This indicates that HsICDH1 may have a half-site mechanism in which the active sites alternate in catalysis. The X-ray crystal structure of the half-site activated complex reveals asymmetry in the homodimer with a single NADPH bound. The structure also indicates a pseudotetramer interface that impedes the egress of NADPH consistent with the suppression of the turnover number at high enzyme concentrations. When the half-site activated form of the enzyme is reacted with NADP+, NADPH forms with a rate constant of 204 s-1 followed by a shift in the NADPH absorption spectrum with a rate constant of 28 s-1. These data indicate the accumulation of two intermediate states. Once D-ICT is exhausted, HsICDH1 relaxes to the inactive open state with a rate constant of ∼3 s-1.


Asunto(s)
Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/metabolismo , Dominio Catalítico , Humanos , Cinética , Modelos Moleculares , NADP/metabolismo
4.
Methods Enzymol ; 685: 493-529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37245913

RESUMEN

The pyridoxal-5'-phosphate-dependent l-Arg oxidases are unusual in that they are able to catalyze 4-electron oxidations of arginine using only the PLP cofactor. No metals or other accessory cosubstrates are involved; only arginine, dioxygen, and PLP. The catalytic cycles of these enzymes are replete with colored intermediates whose accumulation and decay can be monitored spectrophotometrically. This makes the l-Arg oxidases excellent subjects for detailed mechanistic investigations. They are worth studying, because they can teach us much about how PLP-dependent enzymes modulate the cofactor (structure-function-dynamics) and how new activities can arise from existing enzyme scaffolds. Herein we describe a series of experiments that can be used to probe the mechanisms of l-Arg oxidases. These methods by no means originated in our lab but were learned from talented researchers in other enzyme fields (flavoenzymes and Fe(II)-dependent oxygenases) and have been adapted to fit the requirements of our system. We present practical information for expressing and purifying the l-Arg oxidases, protocols for running stopped-flow experiments to examine the reactions with l-Arg and with dioxygen, and a tandem mass spectrometry-based quench-flow assay to follow the accumulation of the products of the hydroxylating l-Arg oxidases.


Asunto(s)
Oxidorreductasas , Fosfato de Piridoxal , Humanos , Oxigenasas , Arginina , Oxígeno
5.
bioRxiv ; 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32676591

RESUMEN

Small molecules that bind the SARS-CoV-2 non-structural protein 3 Mac1 domain in place of ADP-ribose could be useful as molecular probes or scaffolds for COVID-19 antiviral drug discovery because Mac1 has been linked to coronavirus' ability to evade cellular detection. A high-throughput assay based on differential scanning fluorimetry (DSF) was therefore optimized and used to identify possible Mac1 ligands in small libraries of drugs and drug-like compounds. Numerous promising compounds included nucleotides, steroids, beta-lactams, and benzimidazoles. The main drawback to this approach was that a high percentage of compounds in some libraries were found to influence the observed Mac1 melting temperature. To prioritize DSF screening hits, the shapes of the observed melting curves and initial assay fluorescence were examined, and the results were compared with virtual screens performed using Autodock VINA. The molecular basis for alternate ligand binding was also examined by determining a structure of one of the hits, cyclic adenosine monophosphate, with atomic resolution.

6.
SLAS Discov ; 25(10): 1162-1170, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32981460

RESUMEN

Small molecules that bind the SARS-CoV-2 nonstructural protein 3 Mac1 domain in place of ADP-ribose could be useful as molecular probes or scaffolds for COVID-19 antiviral drug discovery because Mac1 has been linked to the ability of coronaviruses to evade cellular detection. A high-throughput assay based on differential scanning fluorimetry (DSF) was therefore optimized and used to identify possible Mac1 ligands in small libraries of drugs and drug-like compounds. Numerous promising compounds included nucleotides, steroids, ß-lactams, and benzimidazoles. The main drawback to this approach was that a high percentage of compounds in some libraries were found to influence the observed Mac1 melting temperature. To prioritize DSF screening hits, the shapes of the observed melting curves and initial assay fluorescence were examined, and the results were compared with virtual screens performed using AutoDock Vina. The molecular basis for alternate ligand binding was also examined by determining a structure of one of the hits, cyclic adenosine monophosphate, with atomic resolution.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , SARS-CoV-2/química , Antivirales/química , Antivirales/farmacología , Sitios de Unión , Proteasas Similares a la Papaína de Coronavirus/genética , AMP Cíclico/química , AMP Cíclico/metabolismo , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , Dominios Proteicos , SARS-CoV-2/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA