Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Proteome Res ; 21(8): 1800-1807, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35749637

RESUMEN

Most mass spectrometry imaging (MSI) methods provide a molecular map of tissue content but little information on tissue function. Mapping tissue function is possible using several well-known examples of "functional imaging" such as positron emission tomography and functional magnetic resonance imaging that can provide the spatial distribution of time-dependent biological processes. These functional imaging methods represent the net output of molecular networks influenced by local tissue environments that are difficult to predict from molecular/cellular content alone. However, for decades, MSI methods have also been demonstrated to provide functional imaging data on a variety of biological processes. In fact, MSI exceeds some of the classic functional imaging methods, demonstrating the ability to provide functional data from the nanoscale (subcellular) to whole tissue or organ level. This Perspective highlights several examples of how different MSI ionization and detection technologies can provide unprecedented detailed spatial maps of time-dependent biological processes, namely, nucleic acid synthesis, lipid metabolism, bioenergetics, and protein metabolism. By classifying various MSI methods under the umbrella of "functional MSI", we hope to draw attention to both the unique capabilities and accessibility with the aim of expanding this underappreciated field to include new approaches and applications.


Asunto(s)
Imagen por Resonancia Magnética , Espectrometría de Masas/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
2.
J Proteome Res ; 21(3): 747-757, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34807624

RESUMEN

Due to the high association of glutathione metabolism perturbation with a variety of disease states, there is a dire need for analytical techniques to study glutathione kinetics. Additionally, the elucidation of microenvironmental effects on changes in glutathione metabolism would significantly improve our understanding of the role of glutathione in disease. We therefore present a study combining a multiple infusion start time protocol, stable isotope labeling technology, infrared matrix-assisted laser desorption electrospray ionization, and high-resolution accurate mass-mass spectrometry imaging to study spatial changes in glutathione kinetics across in sectioned mouse liver tissues. After injecting a mouse with the isotopologues [2-13C,15N]-glycine, [1,2-13C2]-glycine, and [1,2-13C2,15N]-glycine at three different time points, we were able to fully resolve and spatially map their metabolism into three isotopologues of glutathione and calculate their isotopic enrichment in glutathione. We created a tool in the open-source mass spectrometry imaging software MSiReader to accurately compute the percent isotope enrichment (PIE) of these labels in glutathione and visualize them in heat-maps of the tissue sections. In areas of high flux, we found that each label enriched an approximate median of 1.6%, 1.8%, and 1.5%, respectively, of the glutathione product pool measured in each voxel. This method may be adapted to study the heterogeneity of glutathione flux in diseased versus healthy tissues.


Asunto(s)
Glutatión , Espectrometría de Masa por Ionización de Electrospray , Animales , Glicina , Rayos Láser , Ratones , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Rapid Commun Mass Spectrom ; : e9189, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34486781

RESUMEN

We describe a label-free proteomics protocol for the interrogation of the placental proteome. Step-by-step directions, including tissue cleanup and preparation, proteolytic digestion, nanoLC-MS/MS data collection and data analysis, are provided. The workflow has been applied toward exploring differential protein expression patterns in placentas from women who have been exposed to drugs during pregnancy relative to those who have not. We collected 20 tissue specimens, each representing a combination of spatially diverse sections across the placenta. These specimens were analyzed in the work described here, to survey information across the entire organ. This protocol can be scaled up or down as needed.

4.
J Proteome Res ; 19(8): 3276-3285, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32418425

RESUMEN

By employing chip-based capillary zone electrophoresis coupled to high-resolution mass spectrometry, we profiled the plasma metabolome of 134 patients diagnosed with sporadic amyotrophic lateral sclerosis (ALS) (81 males and 53 females) and 118 individuals deemed healthy (49 males and 69 females). The most significant markers (p < 0.01) were creatine, which was 49% elevated, and creatinine and methylhistidine, which were decreased by 20 and 24%, respectively, in ALS patients. The ratio of creatine versus creatinine increased 370 and 200% for male and female ALS patients, respectively. In addition, male ALS patients on an average had 5-13% lower amounts of seven essential amino acids, whereas females did not significantly differ from healthy controls. We developed two models using the metabolite abundances: (1) a classification model for the separation of ALS and healthy samples and (2) a classification model for the prediction of disease progression based on the ALS functional rating score. Utilizing a Monte Carlo cross-validation approach, a linear discriminant analysis model achieved a mean area under the receiver operating characteristic curve (AUC) of 0.85 (0.06) with a mean sensitivity of 80% (9%) and specificity of 78% (10%) for the separation of ALS and controls, respectively. A support vector machine classifier predicted progression categories with an AUC of 0.90 (0.06) with a mean sensitivity of 73% (10%) and a specificity of 86% (5%). Lastly, using a previously reported assay with a stable isotope-labeled (13C315N2) spike-in standard, we were unable to detect the exogenous neurotoxic metabolite, ß-methylamino-l-alanine, in the free or protein-bound fraction of any of the 252 plasma samples.


Asunto(s)
Esclerosis Amiotrófica Lateral , Alanina , Esclerosis Amiotrófica Lateral/diagnóstico , Biomarcadores , Femenino , Humanos , Masculino , Espectrometría de Masas , Metaboloma
5.
Anal Bioanal Chem ; 412(22): 5465-5475, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32591871

RESUMEN

We employ shotgun proteomics and data-independent acquisition (DIA) mass spectrometry to analyze cerebrospinal fluid longitudinally collected from 14 amyotrophic lateral sclerosis (ALS) patients (8 males and 6 females). We perform three main analyses of these data: (1) examine the intra- and inter-patient protein variability in CSF; (2) explore the association of inflammation with rate of disease progression; and (3) develop a mixed-effects model to best explain the decrease in ALS-Functional Rating Scale (ALS-FRS) score. Overall, the CSF protein abundances are tightly regulated with the intra-individual variability contributing just 4% to the overall variance. In four patients, a moderately significant correlation (p < 0.1) was observed between inflammation and rate of disease progression. Using a least absolute shrinkage and selection operator (LASSO) variable selection, we selected 55 viable peptides for mathematical modeling via a linear mixed-effects regression. We then employed forward selection to generate a final model by minimizing Akaike's information criterion (AIC). The final model utilized changes in abundance from 28 peptides as fixed effects to model progression of the disease in these patients. These peptides were from proteins involved in stress response and innate immunity. Graphical abstract.


Asunto(s)
Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Péptidos/líquido cefalorraquídeo , Anciano , Cromatografía Liquida/métodos , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proteómica , Espectrometría de Masas en Tándem/métodos
6.
J Mass Spectrom ; 57(8): e4875, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35900350

RESUMEN

In mass spectrometry imaging (MSI) applications of infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI), an exogenous ice layer is the gold standard for an energy-absorbing matrix. However, the formation of the ice matrix requires additional time and instrument hardware, so glycerol was investigated herein as an alternative to the ice matrix to potentially improve spatial resolution and ionization, while decreasing experiment time. Glycerol solutions of varying concentrations were sprayed over top of rat liver tissue sections for analysis by IR-MALDESI and compared to the typical ice matrix condition. Additionally, we tested if combining the ice matrix and glycerol matrix would further improve analyses. Matrix conditions were evaluated by comparing ion abundance of six lipid species, the laser ablation spot diameter, and number of METASPACE annotations. The ion abundances were also normalized to the volume of tissue ablated to correct for lower abundance values due to less ablated tissue. It was observed that utilizing a 50% glycerol matrix without ice provides improved spatial resolution with lipid abundances and annotations comparable to the ice matrix standard, while decreasing the time required to complete an IR-MALDESI tissue imaging experiment.


Asunto(s)
Glicerol , Hielo , Animales , Lípidos , Ratas , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
7.
Free Radic Biol Med ; 193(Pt 2): 677-684, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36402437

RESUMEN

Although glutathione plays a key role in cancer cell viability and therapy response there is no clear trend in relating the level of this antioxidant to clinical stage, histological grade, or therapy response in patient tumors. The likely reason is that static levels of glutathione are not a good indicator of how a tissue deals with oxidative stress. A better indicator is the functional capacity of the tissue to maintain glutathione levels in response to this stress. However, there are few methods to assess glutathione metabolic function in tissue. We have developed a novel functional mass spectrometry imaging (fMSI) method that can map the variations in the conversion of glycine to glutathione metabolic activity across tumor tissue sections by tracking the fate of three glycine isotopologues administered in a timed sequence to tumor-bearing anesthetized mice. This fMSI method generates multiple time point kinetic data for substrate uptake and glutathione production from each spatial location in the tissue. As expected, the fMSI data shows glutathione metabolic activity varies across the murine 4T1 mammary tumor. Although glutathione levels are highest at the tumor periphery there are regions of high content but low metabolic activity. The timed infusion method also detects variations in delivery of the glycine isotopologues thereby providing a measure of tissue perfusion, including evidence of intermittent perfusion, that contributes to the observed differences in metabolic activity. We believe this new approach will be an asset to linking molecular content to tissue function.


Asunto(s)
Glicina , Neoplasias Mamarias Animales , Ratones , Animales , Transporte Biológico , Glutatión , Espectrometría de Masas
8.
Cell Metab ; 34(7): 1042-1053.e6, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35688154

RESUMEN

Dietary fructose, especially in the context of a high-fat western diet, has been linked to type 2 diabetes. Although the effect of fructose on liver metabolism has been extensively studied, a significant portion of the fructose is first metabolized in the small intestine. Here, we report that dietary fat enhances intestinal fructose metabolism, which releases glycerate into the blood. Chronic high systemic glycerate levels induce glucose intolerance by slowly damaging pancreatic islet cells and reducing islet sizes. Our findings provide a link between dietary fructose and diabetes that is modulated by dietary fat.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Islotes Pancreáticos , Glucemia , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/farmacología , Fructosa/metabolismo , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo
9.
J Anal Toxicol ; 43(3): 161-169, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462231

RESUMEN

Designer drugs including synthetic cannabinoids and synthetic cathinones are an increasing problem due to the ease of access to these compounds. They present analytical challenges inasmuch as the compound structures are numerous and growing within each class. Typically each class of designer compounds is analyzed separately due to differences in chemistry, desired cut-offs or other reasons. Physicians treating "high-risk" patients typically order tests for all "illicit" substances which can span several test classes. Despite that multiple classes of designer drugs are ordered together, there has not been a comprehensive confirmatory test developed to date. Presented here is a novel comprehensive designer drug LC-MS-MS method that combines synthetic cannabinoids and synthetic cathinones, etizolam, a designer benzodiazepine and mitragynine (kratom), a natural product analgesic. This method improves laboratory throughput with a cycle time of ~4.5 min which affords resolution of crucial isomers, such as ethylone and butylone. Development of this method also provided an opportunity to update the list of compounds within the method. Analytes with fewer than five positive specimens in a year of testing with previous separate methods were removed as old and not current. New analytes were added based on reports from NMS Laboratories and the US Drug Enforcement Administration testing and drug seizures, which included etizolam, its major metabolite α-hydroxyetizolam as well as newer synthetic cannabinoids (5-fluoro ADB metabolite 7, AB-FUBINACA metabolite 3, AB-FUBINACA metabolite 4 and MDMB-FUBINACA metabolite M1) and synthetic cathinones (N-ethyl pentylone). Finally, the impact of the new analytes and cut-off changes are discussed in context with patient results from the first 4 months of testing after implementation of the method in the lab.


Asunto(s)
Cannabinoides/análisis , Drogas de Diseño/análisis , Toxicología Forense/métodos , Cannabinoides/orina , Cromatografía Liquida , Toxicología Forense/instrumentación , Humanos , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA