Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(35): e2302048120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603738

RESUMEN

Gaseous nitrous acid (HONO) is a critical source of hydroxyl radicals (OH) in the troposphere. While both direct and secondary sources contribute to atmospheric HONO, direct emissions have traditionally been considered minor contributors. In this study, we developed δ15N and δ18O isotopic fingerprints to identify six direct HONO emission sources and conducted a 1-y case study on the isotopic composition of atmospheric HONO at rural and urban sites. Interestingly, we identified that livestock farming is a previously overlooked direct source of HONO and determined its HONO to ammonia (NH3) emission ratio. Additionally, our results revealed that spatial and temporal variations in atmospheric HONO isotopic composition can be partially attributed to direct emissions. Through a detailed HONO budget analysis incorporating agricultural sources, we found that direct HONO emissions accounted for 39~45% of HONO production in rural areas across different seasons. The findings were further confirmed by chemistry transport model simulations, highlighting the significance of direct HONO emissions and their impact on air quality in the North China Plain. These findings provide compelling evidence that direct HONO emissions play a more substantial role in contributing to atmospheric HONO than previously believed. Moreover, the δ15N and δ18O isotopic fingerprints developed in this study may serve as a valuable tool for further research on the atmospheric chemistry of reactive nitrogen gases.

2.
Proc Natl Acad Sci U S A ; 120(20): e2219588120, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155894

RESUMEN

Aerosol microdroplets as microreactors for many important atmospheric reactions are ubiquitous in the atmosphere. pH largely regulates the chemical processes within them; however, how pH and chemical species spatially distribute within an atmospheric microdroplet is still under intense debate. The challenge is to measure pH distribution within a tiny volume without affecting the chemical species distribution. We demonstrate a method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution inside single microdroplets of varying sizes. We find that the surface of all microdroplets is more acidic, and a monotonic trend of pH decreasing is observed in the 2.9-µm aerosol microdroplet from center to edge, which is well supported by molecular dynamics simulation. However, bigger cloud microdroplet differs from small aerosol for pH distribution. This size-dependent pH distribution in microdroplets can be related to the surface-to-volume ratio. This work presents noncontact measurement and chemical imaging of pH distribution in microdroplets, filling the gap in our understanding of spatial pH in atmospheric aerosol.

3.
Environ Sci Technol ; 58(13): 5911-5920, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38437592

RESUMEN

HONO acts as a major OH source, playing a vital role in secondary pollutant formation to deteriorate regional air quality. Strong unknown sources of daytime HONO have been widely reported, which significantly limit our understanding of radical cycling and atmospheric oxidation capacity. Here, we identify a potential daytime HONO and OH source originating from photoexcited phenyl organic nitrates formed during the photoreaction of aromatics and NOx. Significant HONO (1.56-4.52 ppb) and OH production is observed during the photoreaction of different kinds of aromatics with NOx (18.1-242.3 ppb). We propose an additional mechanism involving photoexcited phenyl organic nitrates (RONO2) reacting with water vapor to account for the higher levels of measured HONO and OH than the model prediction. The proposed HONO formation mechanism was evidenced directly by photolysis experiments using typical RONO2 under UV irradiation conditions, during which HONO formation was enhanced by relative humidity. The 0-D box model incorporated in this mechanism accurately reproduced the evolution of HONO and aromatic. The proposed mechanism contributes 5.9-36.6% of HONO formation as the NOx concentration increased in the photoreaction of aromatics and NOx. Our study implies that photoexcited phenyl organic nitrates are an important source of atmospheric HONO and OH that contributes significantly to atmospheric oxidation capacity.


Asunto(s)
Contaminantes Ambientales , Ácido Nitroso , Ácido Nitroso/análisis , Radical Hidroxilo , Oxidación-Reducción , Rayos Ultravioleta , Nitratos
4.
Environ Sci Technol ; 58(21): 9227-9235, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38751196

RESUMEN

Severe ozone (O3) pollution has been a major air quality issue and affects environmental sustainability in China. Conventional mitigation strategies focusing on reducing volatile organic compounds and nitrogen oxides (NOx) remain complex and challenging. Here, through field flux measurements and laboratory simulations, we observe substantial nitrous acid (HONO) emissions (FHONO) enhanced by nitrogen fertilizer application at an agricultural site. The observed FHONO significantly improves model performance in predicting atmospheric HONO and leads to regional O3 increases by 37%. We also demonstrate the significant potential of nitrification inhibitors in reducing emissions of reactive nitrogen, including HONO and NOx, by as much as 90%, as well as greenhouse gases like nitrous oxide by up to 60%. Our findings introduce a feasible concept for mitigating O3 pollution: reducing soil HONO emissions. Hence, this study has important implications for policy decisions related to the control of O3 pollution and climate change.


Asunto(s)
Ácido Nitroso , Ozono , Suelo , Ácido Nitroso/química , Suelo/química , Contaminación del Aire/prevención & control , Contaminantes Atmosféricos , China , Cambio Climático , Óxido Nitroso
5.
Environ Sci Technol ; 57(43): 16424-16434, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844023

RESUMEN

Mitigating ammonia (NH3) emissions is a significant challenge, given its well-recognized role in the troposphere, contributing to secondary particle formation and impacting acid rain. The difficulty arises from the highly uncertain attribution of atmospheric NH3 to specific emission sources, especially when accounting for diverse environments and varying spatial and temporal scales. In this study, we established a refined δ15N fingerprint for eight emission sources, including three previously overlooked sources of potential importance. We applied this approach in a year-long case study conducted in urban and rural sites located only 40 km apart in the Shandong Peninsula, North China Plain. Our findings highlight that although atmospheric NH3 concentrations and seasonal trends exhibited similarities, their isotopic compositions revealed significant distinctions in the primary NH3 sources. In rural areas, although agriculture emerged as the dominant emission source (64.2 ± 19.5%), a previously underestimated household stove source also played a considerably greater role, particularly during cold seasons (36.5 ± 12.5%). In urban areas, industry and traffic (33.5 ± 15.6%) and, surprisingly, sewage treatment (27.7 ± 11.3%) associated with high population density were identified as the major contributors. Given the relatively short lifetime of atmospheric NH3, our findings highlight the significance of the isotope approach in offering a more comprehensive understanding of localized and seasonal influences of NH3 sources compared to emissions inventories. The refined isotopic fingerprint proves to be an effective tool in distinguishing source contributions across spatial and seasonal scales, thereby providing valuable insights for the development of emission mitigation policies aimed at addressing the increasing NH3 burden on the local atmosphere.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Amoníaco/análisis , Estaciones del Año , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , China
6.
J Environ Sci (China) ; 114: 221-232, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35459488

RESUMEN

As a secondary pollutant of photochemical pollution, peroxyacetyl nitrate (PAN) has attracted a close attention. A four-month campaign was conducted at a rural site in North China Plain (NCP) including the measurement of PAN, O3, NOx, PM2.5, oxygenated volatile organic compounds (OVOCs), photolysis rate constants of NO2 and O3 and meteorological parameters to investigate the wintertime characterization of photochemistry from November 2018 to February 2019. The results showed that the maximum and mean values of PAN were 4.38 and 0.93 ± 0.67 ppbv during the campaign, respectively. The PAN under different PM2.5 concentrations from below 75 µg/m3 up to 250 µg/m3, showed different diurnal variation and formation rate. In the PM2.5 concentration range of above 250 µg/m3, PAN had the largest daily mean value of 0.64 ppbv and the fastest production rate of 0.33 ppbv/hr. From the perspective of PAN's production mechanism, the light intensity and precursors concentrations under different PM2.5 pollution levels indicated that there were sufficient light intensity and high volatile organic compounds (VOCs) and NOx precursors concentration even under severe pollution level to generate a large amount of PAN. Moreover, the bimodal staggering phenomenon of PAN and PM2.5 provided a basis that PAN might aggravate haze through secondary organic aerosols (SOA) formation.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Atención , China , Monitoreo del Ambiente , Material Particulado/análisis , Ácido Peracético/análogos & derivados , Estaciones del Año , Compuestos Orgánicos Volátiles/análisis
7.
J Environ Sci (China) ; 102: 185-197, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33637243

RESUMEN

Understanding the formation mechanisms of secondary air pollution is very important for the formulation of air pollution control countermeasures in China. Thus, a large-scale outdoor atmospheric simulation smog chamber was constructed at Chinese Research Academy of Environmental Sciences (the CRAES Chamber), which was designed for simulating the atmospheric photochemical processes under the conditions close to the real atmospheric environment. The chamber consisted of a 56-m3 fluorinated ethylene propylene (FEP) Teflon film reactor, an electrically-driven stainless steel alloy shield, an auxiliary system, and multiple detection instrumentations. By performing a series of characterization experiments, we obtained basic parameters of the CRAES chamber, such as the mixing ability, the background reactivity, and the wall loss rates of gaseous compounds (propene, NO, NO2, ozone) and aerosols (ammonium sulfate). Oxidation experiments were also performed to study the formation of ozone and secondary organic aerosol (SOA), including α-pinene ozonolysis, propene and 1,3,5-trimethylbenzene photooxidation. Temperature and seed effects on the vapor wall loss and SOA yields were obtained in this work: higher temperature and the presence of seed could reduce the vapor wall loss; SOA yield was found to depend inversely on temperature, and the presence of seed could increase SOA yield. The seed was suggested to be used in the chamber to reduce the interaction between the gas phase and chamber walls. The results above showed that the CRAES chamber was reliable and could meet the demands for investigating tropospheric chemistry.


Asunto(s)
Contaminantes Atmosféricos , Esmog , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Procesos Fotoquímicos , Esmog/análisis
8.
Environ Sci Technol ; 54(18): 11048-11057, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32808764

RESUMEN

Nitrous acid (HONO) is a major precursor of tropospheric hydroxyl radical (OH) that accelerates the formation of secondary pollutants. The HONO sources, however, are not well understood, especially in polluted areas. Based on a comprehensive winter field campaign conducted at a rural site of the North China Plain, a box model (MCM v3.3.1) was used to simulate the daytime HONO budget and nitrate formation. We found that HONO photolysis acted as the dominant source for primary OH with a contribution of more than 92%. The observed daytime HONO could be well explained by the known sources in the model. The heterogeneous conversion of NO2 on ground surfaces and the homogeneous reaction of NO with OH were the dominant HONO sources with contributions of more than 36 and 34% to daytime HONO, respectively. The contribution from the photolysis of particle nitrate and the reactions of NO2 on aerosol surfaces was found to be negligible in clean periods (2%) and slightly higher during polluted periods (8%). The relatively high OH levels due to fast HONO photolysis at the rural site remarkably accelerated gas-phase reactions, resulting in the fast formation of nitrate as well as other secondary pollutants in the daytime.


Asunto(s)
Nitratos , Ácido Nitroso , Aerosoles , China , Radical Hidroxilo , Ácido Nitroso/análisis
9.
Environ Sci Technol ; 54(6): 3114-3120, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32022545

RESUMEN

Northern China is regularly subjected to intense wintertime "haze events", with high levels of fine particles that threaten millions of inhabitants. While sulfate is a known major component of these fine haze particles, its formation mechanism remains unclear especially under highly polluted conditions, with state-of-the-art air quality models unable to reproduce or predict field observations. These haze conditions are generally characterized by simultaneous high emissions of SO2 and photosensitizing materials. In this study, we find that the excited triplet states of photosensitizers could induce a direct photosensitized oxidation of hydrated SO2 and bisulfite into sulfate S(VI) through energy transfer, electron transfer, or hydrogen atom abstraction. This photosensitized pathway appears to be a new and ubiquitous chemical route for atmospheric sulfate production. Compared to other aqueous-phase sulfate formation pathways with ozone, hydrogen peroxide, nitrogen dioxide, or transition-metal ions, the results also show that this photosensitized oxidation of S(IV) could make an important contribution to aerosol sulfate formation in Asian countries, particularly in China.


Asunto(s)
Contaminantes Atmosféricos , Trastornos por Fotosensibilidad , Aerosoles , Asia , China , Humanos , Material Particulado , Sulfatos
10.
J Environ Sci (China) ; 95: 111-120, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32653170

RESUMEN

Rate coefficients for the reaction of NO3 radicals with 6 unsaturated volatile organic compounds (VOCs) in a 7300 L simulation chamber at ambient temperature and pressure have been determined by the relative rate method. The resulting rate coefficients were determined for isoprene, 2-carene, 3-carene, methyl vinyl ketone (MVK), methacrolein (MACR) and crotonaldehyde (CA), as (6.6 ± 0.8) × 10-13, (1.8 ± 0.6) × 10-11, (8.7 ± 0.5) × 10-12, (1.24 ± 1.04) × 10-16, (3.3 ± 0.9) × 10-15 and (5.7 ± 1.2) × 10-15 cm3/(molecule•sec), respectively. The experiments indicate that NO3 radical reactions with all the studied unsaturated VOCs proceed through addition to the olefinic bond, however, it indicates that the introduction of a carbonyl group into unsaturated VOCs can deactivate the neighboring olefinic bond towards reaction with the NO3 radical, which is to be expected since the presence of these electron-withdrawing substituents will reduce the electron density in the π orbitals of the alkenes, and will therefore reduce the rate coefficient of these electrophilic addition reactions. In addition, we investigated the product formation from the reactions of 2-carene and 3-carene with the NO3 radical. Qualitative identification of an epoxide (C10H16OH+), caronaldehyde (C10H16O2H+) and nitrooxy-ketone (C10H16O4NH+) was achieved using a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and a reaction mechanism is proposed.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Cinética
11.
J Environ Sci (China) ; 95: 155-164, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32653175

RESUMEN

The heterogeneous degradation of nitrogen dioxide (NO2) on five samples of natural Icelandic volcanic particles has been investigated. Laboratory experiments were carried out under simulated atmospheric conditions using a coated wall flow tube (CWFT). The CWFT reactor was coupled to a blue light nitrogen oxides analyzer (NOx analyzer), and a long path absorption photometer (LOPAP) to monitor in real time the concentrations of NO2, NO and HONO, respectively. Under dark and ambient relative humidity conditions, the steady state uptake coefficients of NO2 varied significantly between the volcanic samples probably due to differences in magma composition and morphological variation related with the density of surface OH groups. The irradiation of the surface with simulated sunlight enhanced the uptake coefficients by a factor of three indicating that photo-induced processes on the surface of the dust occur. Furthermore, the product yields of NO and HONO were determined under both dark and simulated sunlight conditions. The relative humidity was found to influence the distribution of gaseous products, promoting the formation of gaseous HONO. A detailed reaction mechanism is proposed that supports our experimental observations. Regarding the atmospheric implications, our results suggest that the NO2 degradation on volcanic particles and the corresponding formation of HONO is expected to be significant during volcanic dust storms or after a volcanic eruption.


Asunto(s)
Atmósfera , Ácido Nitroso , Polvo , Dióxido de Nitrógeno , Luz Solar
12.
Environ Sci Technol ; 53(15): 8862-8871, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31291100

RESUMEN

Perfluoroketones, used as replacement to halons and CFCs, are excluded from the Montreal Protocol because they are considered as nonozone depleting substances. However, their chemical structure makes them possible greenhouse gases if their atmospheric lifetimes are long enough. To assess that possibility, we investigated the photolysis of perfluoro-2-methyl-3-pentanone (PF-2M3P), and perfluoro-3-methyl-2-butanone (PF-3M2B) using outdoor atmospheric simulation chambers. In addition, the photolysis of a non fluorinated pentanone (2-methyl-3-pentanone, 2M3P) was studied. The results showed that photolysis is the dominant loss pathway of PF-2M3P and PF-3M2B in the troposphere whereas 2M3P is lost by both photolysis and gas phase reaction with atmospheric oxidants. The photolysis effective quantum yields of PF-2M3P, PF-3M2B, and 2M3P were estimated and some of the main products identified. The photolysis of PF-2M3P and PF-3M2B was found to have a minor impact on the atmospheric burden of fluorinated acids. The atmospheric lifetimes of PF-2M3P, PF-3M2B, and 2M3P were estimated to 3-11 days, ∼13 days, and 1-2 days, respectively. Combining the obtained data, it has been concluded that with 100-year time horizon global warming potentials (GWP100) equivalent to <0.21, ∼0.29, and ≤1.3 × 10-7 for PF-2M3P, PF-3M2B, and 2M3P, respectively, these compounds will have a negligible impact on global warming.


Asunto(s)
Butanonas , Pentanonas , Atmósfera , Calentamiento Global , Fotólisis
13.
Phys Chem Chem Phys ; 21(8): 4246-4257, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30747177

RESUMEN

The rate coefficients for the reactions of NO3 radicals with methane (CH4), ethane (C2H6), propane (C3H8), n-butane (n-C4H10), iso-butane (iso-C4H10), 2,3-dimethylbutane (C6H14), cyclopentane (C5H10) and cyclohexane (C6H12) at atmosphere pressure (1000 ± 5 hPa) and room temperature (298 ± 1.5 K) were measured using an absolute method. Careful attention was paid to the role of secondary reactions and impurities. The upper limits of rate coefficients for methane and ethane at 298 K are <4 × 10-20 and <5 × 10-19 cm3 molecule-1 s-1, respectively. The rate coefficients at 298 K for propane, n-butane, iso-butane, 2,3-dimethybutane, cyclopentane and cyclohexane are, (9.2 ± 2.9) × 10-18, (1.5 ± 0.4) × 10-17, (8.2 ± 2.2) × 10-17, (5.8 ± 2.4) × 10-16, (1.5 ± 0.6) × 10-16 and (1.3 ± 0.4) × 10-16 cm3 molecule-1 s-1, respectively. Rate coefficients for the reactions of NO3 radical with two deuterated n-butanes (butane-D10 and butane-1,1,1,4,4,4-D6) are also reported. We show that the rate coefficients for NO3 reactions correlate with the enthalpy change for the reaction, thereby suggesting that the mechanism for NO3 reactions with alkanes is through H atom abstraction. The measured rate coefficients are compared with available literature values. This study increases the number of available rate coefficients for the reactions of NO3 with alkanes and sets significantly lower upper limits for reaction of NO3 with ethane and methane. The atmospheric significance of our reported rate coefficients is briefly discussed.

14.
Phys Chem Chem Phys ; 21(44): 24592-24600, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31665197

RESUMEN

The rate coefficient for the possible reaction of OH radical with N2O was determined to be k1 < 1 × 10-17 cm3 molecule-1 s-1 between 253 and 372 K using pulsed laser photolysis to generate OH radicals and pulsed laser induced fluorescence to detect them. The rate coefficient for the reaction of NO3 radical with N2O was measured to be k2 < 5 × 10-20 cm3 molecule-1 s-1 at 298 K using a direct method that involves a large reaction chamber equipped with cavity ring down spectroscopic detection of NO3 and N2O5. Various tests were carried out ensure the accuracy of our measurements. Based on our measured upper limits, we suggest that these two reactions alter the atmospheric lifetime of N2O of ∼120 years by less than 4%.

15.
J Phys Chem A ; 123(7): 1469-1484, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30626185

RESUMEN

The influence of the precursor chemical structure on secondary organic aerosol (SOA) formation was investigated through the study of the ozonolysis of two anthropogenic aromatic alkenes: 2-methylstyrene and indene. Experiments were carried out in three different simulation chambers: ICARE 7300L FEP Teflon chamber (ICARE, Orléans, France), EUPHORE FEP Teflon chamber (CEAM, Valencia, Spain), and CESAM evacuable stainless steel chamber (LISA, Créteil, France). For both precursors, SOA yield and growth were studied on a large range of initial concentrations (from ∼60 ppbv to 1.9 ppmv) and the chemical composition of both gaseous and particulate phases was investigated at a molecular level. Gas phase was described using FTIR spectroscopy and online gas chromatography coupled to mass spectrometry, and particulate chemical composition was analyzed (i) online by thermo-desorption coupled to chemical ionization mass spectrometry and (ii) offline by supercritical fluid extraction coupled to gas chromatography and mass spectrometry. The results obtained from a large set of experiments performed in three different chambers and using several complementary analytical techniques were in very good agreement. SOA yield was up to 10 times higher for indene ozonolysis than for 2-methylstyrene ozonolysis at the same reaction advancement. For 2-methylstyrene ozonolysis, formaldehyde and o-tolualdehyde were the two main gaseous phase products while o-toluic acid was the most abundant among six products detected within the particulate phase. For indene ozonolysis, traces of formic and phthalic acids as well as 11 species were detected in the gaseous phase and 11 other products were quantified in the particulate phase, where phthaldialdehyde was the main product. On the basis of the identified products, reaction mechanisms were proposed that highlight specific pathways due to the precursor chemical structure. These mechanisms were finally compared and discussed regarding SOA formation. In the case of 2-methylstyrene ozonolysis, ozone adds mainly on the external and monosubstituted double bond, yielding only one C8- and monofunctionalized Criegee intermediate and hence more volatile products as well as lower SOA mass than indene ozonolysis in similar experimental conditions. In the case of indene, ozone adds mainly on the five-carbon-ring and disubstituted C═C double bond, leading to the formation of two C9- and bifunctionalized Criegee intermediates, which then evolve via different pathways including the hydroperoxide channel and form highly condensable first-generation products.

16.
Ecotoxicol Environ Saf ; 168: 110-119, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30384158

RESUMEN

Bacteria are ubiquitous in the near-surface atmosphere where they constitute an important component of aerosols with the potential to affect climate change, ecosystems, atmospheric process and human health. Limitation in tracking bacterial diversity accurately has thus far prevented the knowledge of airborne bacteria and their pathogenic properties. We performed a comprehensive assessment of bacterial abundance and diverse community in PM2.5 collected at Mt. Tai, via high-throughput sequencing and real-time PCR. The samples exhibited a high microbial biodiversity and complex chemical composition. The dominating populations were gram-negative bacteria including Burkholderia, Delftia, Bradyrhizobium, and Methylobacterium. The PM mass concentration, chemical composition, bacterial concentration and community structure varied under the influence of different air-mass trajectories. The highest mass concentration of PM2.5 (61 µg m-3) and major chemical components were recorded during periods when marine southeasterly air masses were dominant. The local terrestrial air masses from Shandong peninsula and its adjacent areas harbored highest bacterial concentration loading (602 cells m-3) and more potential pathogens at the site. In contrast, samples influenced by the long-distance air flow from Siberia and Outer Mongolia were found to have a highest richness and diversity as an average, which was also marked by the increase of dust-associated bacteria (Brevibacillus and Staphylococcus). The primary research may serve as an important reference for the environmental microbiologist, health workers, and city planners.


Asunto(s)
Microbiología del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Administración por Inhalación , Aerosoles/análisis , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , China , Análisis por Conglomerados , Variaciones en el Número de Copia de ADN , Polvo/análisis , Biblioteca de Genes , Humanos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
Ecotoxicol Environ Saf ; 166: 146-156, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30265878

RESUMEN

Aiming to a better understanding sources contributions and regional sources of fine particles, a total of 273 filter samples (159 of PM2.5 and 114 of PM1.0) were collected per 8 h during the winter 2016 at a southwest suburb of Beijing. Chemical compositions, including water soluble ions, organic carbon (OC), and elemental carbon (EC), as well as secondary organic carbon (SOC), were systematically analyzed and estimated. The total ions concentrations (TIC), OC, and SOC of PM2.5 were with the following order: 16:00-24:00 > 08:00-16:00 > 00:00-08:00. Since primary OC and EC were mainly attributed to the residential combustion in the night time, their valley values were observed in the daytime (08:00-16:00). However, the highest ratio value of SOC/OC was observed in the daytime. It is because that SOC is easily formed under sunshine and relatively high temperature in the daytime. Positive matrix factorization (PMF), clustering, and potential source contribution function (PSCF) were employed for apportioning sources contributions and speculating potential sources spatial distributions. The average concentrations of each species and the source contributions to each species were calculated based on the data of species concentrations with an 8 h period simulated by PMF model. Six likely sources, including secondary inorganic aerosols, coal combustion, industrial and traffic emissions, road dust, soil and construction dust, and biomass burning, were contributed to PM2.5 accounting for 29%, 21%, 17%, 16%, 9%, 8%, respectively. The results of cluster analysis indicated that most of air masses were transported from West and Northwest directions to the sampling location during the observation campaign. Several seriously polluted areas that might affect the air quality of Beijing by long-range transport were identified. Most of air masses were transported from Western and Northwestern China. According to the results of PSCF analysis, Western Shandong, Southern Hebei, Northern Henan, Western Inner Mongolia, Northern Shaanxi, and the whole Shanxi provinces should be the key areas of air pollution control in China. The exposure-response function was used to estimate the health impact associated with PM2.5 pollution. The population affected by PM2.5 during haze episodes reached 0.31 million, the premature death cases associated with PM2.5 reached 2032. These results provided important implication for making environmental policies to improve air quality in China.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Medición de Riesgo , Aerosoles/análisis , Aerosoles/química , Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Beijing , Carbono/análisis , Carbón Mineral/análisis , Polvo/análisis , Contaminación Ambiental/análisis , Material Particulado/química , Estaciones del Año , Suelo , Emisiones de Vehículos/análisis
18.
J Environ Sci (China) ; 71: 271-282, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30195685

RESUMEN

The rate constants for the Cl atom reaction with three branched ketones have been measured at 298±2K and 760Torr using the relative rate method in the absence of NO. The rate constants values obtained (in units of 10-10cm3/(molecule·sec)) are: k(2-methyl-3-pentanone)=1.07±0.26, k(3-methyl-2-pentanone)=1.21±0.26, and k(4-methyl-2-pentanone)=1.35±0.27. Combining the chemical kinetic data obtained by this study with those reported for other ketones, a revised Structure Activity Relationship (SAR) parameter and R group reactivity (kR) of R(O)R' and CHx (x=1, 2, 3) group reactivity (kCHx) toward Cl atoms were proposed. In addition, the products from the three reactions in the presence of NO were also identified and quantified by using PTR-ToF-MS and GC-FID, and the yields of the identified products are: acetone (39%±8%)+ethanal (78%±12%), 2-butanone (22%±2%)+ethanal (75%±10%)+propanal (14%±1%) and acetone (26%±3%)+2-methylpropanal (24%±2%), for Cl atoms reaction with 2-methyl-3-pentanone, 3-methyl-2-pentanone and 4-methyl-2-pentanone, respectively. Based on the obtained results, the reaction mechanisms of Cl atoms with these three ketones are proposed.


Asunto(s)
Cloro/química , Cetonas/química , Modelos Químicos , Aldehídos , Presión Atmosférica , Cinética , Pentanonas , Temperatura
19.
Faraday Discuss ; 200: 289-311, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28581006

RESUMEN

The rate constants for the ozonolysis of isoprene (ISO), methacrolein (MACR) and methyl vinyl ketone (MVK) have been measured using the newly built large volume atmospheric simulation chamber at CNRS-Orleans (France), HELIOS (Chambre de simulation atmosphérique à irradiation naturelle d'Orléans). The OH radical yields from the ozonolysis of isoprene, MACR and MVK have also been determined, as well as the gas phase stable products and their yields. The secondary organic aerosol yield for the ozonolysis of isoprene has been tentatively measured in the presence and absence of an OH radical scavenger. The measurements were performed under different experimental conditions with and without adding cyclohexane (cHX) as an OH radical scavenger. All experiments have been conducted at 760 torr of purified dry air (RH < 1%) and ambient temperature (T = 281-295 K). The data obtained are discussed and compared with those from the literature. The use of the HELIOS facility and its associated analytical equipment enables the derivation of kinetic parameters as well as mechanistic information under near realistic atmospheric conditions.

20.
J Phys Chem A ; 121(23): 4464-4474, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28498668

RESUMEN

Two different experimental methods (relative rate and absolute rate methods) were used to measure the rate coefficients for the reactions of NO3 radical with six methacrylate esters: methyl methacrylate (MMA, k1), ethyl methacrylate (EMA, k2), propyl methacrylate (PMA, k3), isopropyl methacrylate (IPMA, k4), butyl methacrylate (BMA, k5), and isobutyl methacrylate (IBMA, k6). In the relative rate method, the loss of the esters relative to that of a reference compound was followed in a 7300 L Teflon-walled chamber at 298 ± 2 K and 1000 ± 5 hpa. In the absolute method, the temporal profiles of NO3 and N2O5 were followed by using a dual channel cavity ring-down spectrometer in the presence of an excess of ester in the 7300 L chamber. The rate coefficients from these two methods (weighted averages) in the units of 10-15 cm3 molecule-1 s-1 at 298 K are k1 = 2.98 ± 0.35, k2 = 4.67 ± 0.49, k3 = 5.23 ± 0.60, k4 = 7.91 ± 1.00, k5 = 5.91 ± 0.58, and k6 = 6.24 ± 0.66. The quoted uncertainties are at the 2σ level and include estimated systematic errors. Unweighted averages are also reported. In addition, the rate coefficient k7 for the reaction of NO3 radical with deuterated methyl methacrylate (MMA-d8) was measured by using the relative rate method to be essentially the same as k1. The trends in the measured rate coefficient with the length and nature of the alkyl group, along with the equivalence of k1 and k7, strongly suggest that the reaction of NO3 with the methacrylate esters proceeds via addition to the double bond on the methacrylate group. The present results are compared with those from previous studies. Using the measured values of the rate coefficients, along with those for reactions of these esters with OH, O3, and chlorine atoms, we calculated the atmospheric lifetimes of methacrylate esters. We suggest that NO3 radicals do contribute to the atmospheric loss of these unsaturated esters, but to a lesser extent than their reactions with OH and O3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA