Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 20(8): 1174-1178, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468619

RESUMEN

Multiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.


Asunto(s)
Anticuerpos , Recursos Comunitarios , Humanos , Reproducibilidad de los Resultados , Diagnóstico por Imagen
2.
Nature ; 571(7764): 183-192, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292558

RESUMEN

For several decades, understanding ageing and the processes that limit lifespan have challenged biologists. Thirty years ago, the biology of ageing gained unprecedented scientific credibility through the identification of gene variants that extend the lifespan of multicellular model organisms. Here we summarize the milestones that mark this scientific triumph, discuss different ageing pathways and processes, and suggest that ageing research is entering a new era that has unique medical, commercial and societal implications. We argue that this era marks an inflection point, not only in ageing research but also for all biological research that affects the human healthspan.


Asunto(s)
Envejecimiento/fisiología , Investigación Biomédica , Envejecimiento Saludable/fisiología , Rejuvenecimiento/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Relojes Circadianos , Ensayos Clínicos como Asunto , Envejecimiento Saludable/efectos de los fármacos , Envejecimiento Saludable/genética , Humanos , Inflamación , Longevidad/efectos de los fármacos , Longevidad/genética , Longevidad/fisiología , Mitocondrias/metabolismo , Estado Nutricional , Estrés Oxidativo , Transducción de Señal
3.
Am J Physiol Heart Circ Physiol ; 321(1): H185-H196, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34114892

RESUMEN

We assessed the efficacy of oral supplementation with the flavanoid apigenin on arterial function during aging and identified critical mechanisms of action. Young (6 mo) and old (27 mo) C57BL/6N mice (model of arterial aging) consumed drinking water containing vehicle (0.2% carboxymethylcellulose; 10 young and 7 old) or apigenin (0.5 mg/mL in vehicle; 10 young and 9 old) for 6 wk. In vehicle-treated animals, isolated carotid artery endothelium-dependent dilation (EDD), bioassay of endothelial function, was impaired in old versus young (70% ± 9% vs. 92% ± 1%, P < 0.0001) due to reduced nitric oxide (NO) bioavailability. Old mice had greater arterial reactive oxygen species (ROS) production and oxidative stress (higher nitrotyrosine) associated with greater nicotinamide adenine dinucleotide phosphate oxidase (oxidant enzyme) and lower superoxide dismutase 1 and 2 (antioxidant enzymes); ex vivo administration of Tempol (antioxidant) restored EDD to young levels, indicating ROS-mediated suppression of EDD. Old animals also had greater aortic stiffness as indicated by higher aortic pulse wave velocity (PWV, 434 ± 9 vs. 346 ± 5 cm/s, P < 0.0001) due to greater intrinsic aortic wall stiffness associated with lower elastin levels and higher collagen, advanced glycation end products (AGEs), and proinflammatory cytokine abundance. In old mice, apigenin restored EDD (96% ± 2%) by increasing NO bioavailability, normalized arterial ROS, oxidative stress, and antioxidant expression, and abolished ROS inhibition of EDD. Moreover, apigenin prevented foam cell formation in vitro (initiating step in atherosclerosis) and mitigated age-associated aortic stiffening (PWV 373 ± 5 cm/s) by normalizing aortic intrinsic wall stiffness, collagen, elastin, AGEs, and inflammation. Thus, apigenin is a promising therapeutic for arterial aging.NEW & NOTEWORTHY Our study provides novel evidence that oral apigenin supplementation can reverse two clinically important indicators of arterial dysfunction with age, namely, vascular endothelial dysfunction and large elastic artery stiffening, and prevents foam cell formation in an established cell culture model of early atherosclerosis. Importantly, our results provide extensive insight into the biological mechanisms of apigenin action, including increased nitric oxide bioavailability, normalization of age-related increases in arterial ROS production and oxidative stress, reversal of age-associated aortic intrinsic mechanical wall stiffening and adverse remodeling of the extracellular matrix, and suppression of vascular inflammation. Given that apigenin is commercially available as a dietary supplement in humans, these preclinical findings provide the experimental basis for future translational studies assessing the potential of apigenin to treat arterial dysfunction and reduce cardiovascular disease risk with aging.


Asunto(s)
Envejecimiento/metabolismo , Endotelio Vascular/efectos de los fármacos , Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Espirostanos/farmacología , Rigidez Vascular/efectos de los fármacos , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/metabolismo , Endotelio Vascular/metabolismo , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
4.
Circ Res ; 120(7): 1103-1115, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28219977

RESUMEN

RATIONALE: It is unknown whether every ventricular myocyte expresses all 5 of the cardiac adrenergic receptors (ARs), ß1, ß2, ß3, α1A, and α1B. The ß1 and ß2 are thought to be the dominant myocyte ARs. OBJECTIVE: Quantify the 5 cardiac ARs in individual ventricular myocytes. METHODS AND RESULTS: We studied ventricular myocytes from wild-type mice, mice with α1A and α1B knockin reporters, and ß1 and ß2 knockout mice. Using individual isolated cells, we measured knockin reporters, mRNAs, signaling (phosphorylation of extracellular signal-regulated kinase and phospholamban), and contraction. We found that the ß1 and α1B were present in all myocytes. The α1A was present in 60%, with high levels in 20%. The ß2 and ß3 were detected in only ≈5% of myocytes, mostly in different cells. In intact heart, 30% of total ß-ARs were ß2 and 20% were ß3, both mainly in nonmyocytes. CONCLUSION: The dominant ventricular myocyte ARs present in all cells are the ß1 and α1B. The ß2 and ß3 are mostly absent in myocytes but are abundant in nonmyocytes. The α1A is in just over half of cells, but only 20% have high levels. Four distinct myocyte AR phenotypes are defined: 30% of cells with ß1 and α1B only; 60% that also have the α1A; and 5% each that also have the ß2 or ß3. The results raise cautions in experimental design, such as receptor overexpression in myocytes that do not express the AR normally. The data suggest new paradigms in cardiac adrenergic signaling mechanisms.


Asunto(s)
Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animales , Células Cultivadas , Ventrículos Cardíacos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/genética , Análisis de la Célula Individual
5.
Proc Natl Acad Sci U S A ; 112(33): 10407-12, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240345

RESUMEN

Tissue homeostasis declines with age partly because stem/progenitor cells fail to self-renew or differentiate. Because mitochondrial damage can accelerate aging, we tested the hypothesis that mitochondrial dysfunction impairs stem cell renewal or function. We developed a mouse model, Tg(KRT14-cre/Esr1) (20Efu/J) × Sod2 (tm1Smel) , that generates mitochondrial oxidative stress in keratin 14-expressing epidermal stem/progenitor cells in a temporally controlled manner owing to deletion of Sod2, a nuclear gene that encodes the mitochondrial antioxidant enzyme superoxide dismutase 2 (Sod2). Epidermal Sod2 loss induced cellular senescence, which irreversibly arrested proliferation in a fraction of keratinocytes. Surprisingly, in young mice, Sod2 deficiency accelerated wound closure, increasing epidermal differentiation and reepithelialization, despite the reduced proliferation. In contrast, at older ages, Sod2 deficiency delayed wound closure and reduced epidermal thickness, accompanied by epidermal stem cell exhaustion. In young mice, Sod2 deficiency accelerated epidermal thinning in response to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate, phenocopying the reduced regeneration of older Sod2-deficient skin. Our results show a surprising beneficial effect of mitochondrial dysfunction at young ages, provide a potential mechanism for the decline in epidermal regeneration at older ages, and identify a previously unidentified age-dependent role for mitochondria in skin quality and wound closure.


Asunto(s)
Epidermis/patología , Mitocondrias/metabolismo , Estrés Oxidativo , Envejecimiento de la Piel , Células Madre/citología , Alelos , Animales , Diferenciación Celular , Proliferación Celular , Senescencia Celular , Colágeno/química , Cartilla de ADN , Eliminación de Gen , Perfilación de la Expresión Génica , Pleiotropía Genética , Genotipo , Homeostasis , Humanos , Queratinocitos/citología , Ratones , Ratones Transgénicos , Mitocondrias/patología , Fenotipo , Superóxido Dismutasa/metabolismo , Factores de Tiempo , Cicatrización de Heridas
8.
Proc Natl Acad Sci U S A ; 108(10): 4135-40, 2011 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-21368114

RESUMEN

A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities.


Asunto(s)
Envejecimiento/fisiología , ADN Mitocondrial/genética , Mitocondrias/fisiología , Condicionamiento Físico Animal , Resistencia Física , Mutación Puntual , Envejecimiento/genética , Animales , Apoptosis , Dosificación de Gen , Ratones , Ratones Mutantes , Estrés Oxidativo
9.
Geroscience ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38871964

RESUMEN

Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.

10.
Aging Cell ; 23(3): e14060, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38062873

RESUMEN

Cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to age-related arterial dysfunction, in part, by promoting oxidative stress and inflammation, which reduce the bioavailability of the vasodilatory molecule nitric oxide (NO). In the present study, we assessed the efficacy of fisetin, a natural compound, as a senolytic to reduce vascular cell senescence and SASP factors and improve arterial function in old mice. We found that fisetin decreased cellular senescence in human endothelial cell culture. In old mice, vascular cell senescence and SASP-related inflammation were lower 1 week after the final dose of oral intermittent (1 week on-2 weeks off-1 weeks on dosing) fisetin supplementation. Old fisetin-supplemented mice had higher endothelial function. Leveraging old p16-3MR mice, a transgenic model allowing genetic clearance of p16INK4A -positive senescent cells, we found that ex vivo removal of senescent cells from arteries isolated from vehicle- but not fisetin-treated mice increased endothelium-dependent dilation, demonstrating that fisetin improved endothelial function through senolysis. Enhanced endothelial function with fisetin was mediated by increased NO bioavailability and reduced cellular- and mitochondrial-related oxidative stress. Arterial stiffness was lower in fisetin-treated mice. Ex vivo genetic senolysis in aorta rings from p16-3MR mice did not further reduce mechanical wall stiffness in fisetin-treated mice, demonstrating lower arterial stiffness after fisetin was due to senolysis. Lower arterial stiffness with fisetin was accompanied by favorable arterial wall remodeling. The findings from this study identify fisetin as promising therapy for clinical translation to target excess cell senescence to treat age-related arterial dysfunction.


Asunto(s)
Arterias , Senescencia Celular , Flavonoles , Ratones , Humanos , Animales , Senescencia Celular/genética , Suplementos Dietéticos , Inflamación
11.
Bone Res ; 12(1): 13, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409111

RESUMEN

Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFß signaling (TßRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFß signaling and PLR, but aging did not worsen the existing PLR suppression in male TßRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFß. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFß-dependent maintenance of collagen integrity.


Asunto(s)
Remodelación Ósea , Osteocitos , Humanos , Anciano , Masculino , Animales , Ratones , Remodelación Ósea/fisiología , Colágeno/farmacología , Envejecimiento , Factor de Crecimiento Transformador beta/farmacología
12.
Nat Commun ; 15(1): 4795, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862487

RESUMEN

Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.


Asunto(s)
Leucocitos Mononucleares , Análisis de la Célula Individual , Vuelo Espacial , Simulación de Ingravidez , Animales , Femenino , Humanos , Masculino , Ratones , Inmunidad Innata , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Aprendizaje Automático , Ratones Endogámicos C57BL , Quercetina/farmacología , Transducción de Señal , Linfocitos T/inmunología , Ingravidez
13.
J Neurosci ; 32(47): 16775-84, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23175831

RESUMEN

Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer's disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months, and APP/PS age 9 and 14 months) to age-matched controls. No consistent bioenergetic deficiencies were detected in synaptosomes from the three models; only APP/PS cortical synaptosomes from 14-month-old mice showed an increase in respiration associated with proton leak. J20 mice were chosen for a highly stringent investigation of mitochondrial function and content. There were no significant differences in the quality of the synaptosomal preparations or the mitochondrial volume fraction. Furthermore, respiratory variables, calcium handling, and membrane potentials of synaptosomes from symptomatic J20 mice under calcium-imposed stress were not consistently impaired. The recovery of marker proteins during synaptosome preparation was the same, ruling out the possibility that the lack of functional bioenergetic defects in synaptosomes from J20 mice was due to the selective loss of damaged synaptosomes during sample preparation. Our results support the conclusion that the intrinsic bioenergetic capacities of presynaptic nerve terminals are maintained in these symptomatic AD mouse models.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Metabolismo Energético/fisiología , Terminales Presinápticos/fisiología , Envejecimiento/fisiología , Animales , Calcio/fisiología , Señalización del Calcio/fisiología , Femenino , Humanos , Indicadores y Reactivos , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Consumo de Oxígeno , Terminales Presinápticos/metabolismo , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura
14.
Semin Cancer Biol ; 21(6): 354-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21925603

RESUMEN

Cellular senescence is an established cellular stress response that acts primarily to prevent the proliferation of cells that experience potentially oncogenic stress. In recent years, it has become increasingly apparent that the senescence response is a complex phenotype, which has a variety of cell non-autonomous effects. The senescence-associated secretory phenotype, or SASP, entails the secretion of numerous cytokines, growth factors and proteases. The SASP can have beneficial or detrimental effects, depending on the physiological context. One recently described beneficial effect is to aid tissue repair. Among the detrimental effects, the SASP can disrupt normal tissue structures and function, and, ironically, can promote malignant phenotypes in nearby cells. These detrimental effects in many ways recapitulate the degenerative and hyperplastic pathologies that develop during aging. Because the SASP is largely a response to genomic or epigenomic damage, we suggest it may be a model for a cellular damage response that can propagate damage signals both within and among tissues. We propose that both the degenerative and hyperplastic diseases of aging may be fueled by such damage signals.


Asunto(s)
Envejecimiento/patología , Senescencia Celular , Neoplasias/patología , Humanos , Fenotipo
15.
Aging Cell ; 22(1): e13750, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539941

RESUMEN

Antiretroviral drugs have dramatically improved the prognosis of HIV-infected patients, with strikingly reduced morbidity and mortality. However, long-term use can be associated with signs of premature aging. Highly active antiretroviral therapy generally comprises two nucleoside reverse transcriptase inhibitors (NRTIs), with one of three additional antiretroviral drug classes, including protease inhibitors (PIs). One commonality between mitochondrial dysfunction (induced by NRTIs) and defects in lamin A (induced by PIs) is they can cause or accelerate cellular senescence, a state of essentially irreversible growth arrest, and the secretion of many bioactive molecules collectively known as the senescence-associated secretory phenotype (SASP). We hypothesized that senescent cells increase following treatment with certain HIV therapies. We compared the effects of two distinct HIV PIs: ritonavir-boosted atazanavir (ATV/r) and ritonavir-boosted darunavir (DRN/r), used in combination treatments for HIV infection. Upon ATV/r, but not DRN/r, treatment, cells arrested growth, displayed multiple features of senescence, and expressed significantly upregulated levels of many SASP factors. Furthermore, mice receiving sustained ATV/r treatment showed an increase in senescent cells and age-related decline in physiological function. However, removing treatment reversed the features of senescence observed in vivo and cell culture. Given how these features disappeared with drug removal, certain features of senescence may not be prognostic as defined by an irreversible growth arrest. Importantly, for patients that are treated or have been treated with ATV/r, our data suggest that switching to another PI that does not promote premature aging conditions (DRN/r) may improve the associated age-related complications.


Asunto(s)
Envejecimiento Prematuro , Fármacos Anti-VIH , Infecciones por VIH , Inhibidores de la Proteasa del VIH , Animales , Ratones , Ritonavir/farmacología , Ritonavir/uso terapéutico , Inhibidores de la Proteasa del VIH/farmacología , Inhibidores de la Proteasa del VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Sulfato de Atazanavir/farmacología , Sulfato de Atazanavir/uso terapéutico , Darunavir/farmacología , Darunavir/uso terapéutico , Senescencia Celular
16.
Aging Cell ; 22(8): e13897, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37272263

RESUMEN

Developing accurate methods to quantify age-related muscle loss (sarcopenia) could greatly accelerate development of therapies to treat muscle loss in the elderly, as current methods are inaccurate or expensive. The current gold standard method for quantifying sarcopenia is dual-energy X-ray absorptiometry (DXA) but does not measure muscle directly-it is a composite measure quantifying "lean mass" (muscle) excluding fat and bone. In humans, DXA overestimates muscle mass, which has led to erroneous conclusions about the importance of skeletal muscle in human health and disease. In animal models, DXA is a popular method for measuring lean mass. However, instrumentation is expensive and is potentially limited by anesthesia concerns. Recently, the D3 -creatine (D3 Cr) dilution method for quantifying muscle mass was developed in humans and rats. This method is faster, cheaper, and more accurate than DXA. Here, we demonstrate that the D3 Cr method is a specific assay for muscle mass in mice, and we test associations with DXA and body weight. We evaluated the D3 Cr method compared to DXA-determined lean body mass (LBM) in aged mice and reported that DXA consistently overestimates muscle mass with age. Overall, we provide evidence that the D3 Cr dilution method directly measures muscle mass in mice. Combined with its ease of use, accessibility, and non-invasive nature, the method may prove to more quickly advance development of preclinical therapies targeting sarcopenia.


Asunto(s)
Composición Corporal , Pesos y Medidas Corporales , Creatinina , Músculo Esquelético , Absorciometría de Fotón , Animales , Ratones , Masculino , Femenino , Ratones Endogámicos C57BL , Creatinina/orina , Pesos y Medidas Corporales/métodos
17.
Res Sq ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961365

RESUMEN

Brain white matter tracts undergo structural and functional changes linked to late-life cognitive decline, but the cellular and molecular contributions to their selective vulnerability are not well defined. In naturally aged mice, we demonstrate that senescent and disease-associated microglia (DAM) phenotypes converge in hippocampus-adjacent white matter. Through gold-standard gene expression and immunolabeling combined with high-dimensional spatial mapping, we identified microglial cell fates in aged white matter characterized by aberrant morphology, microenvironment reorganization, and expression of senescence and DAM markers, including galectin 3 (GAL3/Lgals3), B-cell lymphoma 2 (Bcl2), and cyclin dependent kinase inhibitors, including Cdkn2a/p16ink4a. Pharmacogenetic or pharmacological targeting of p16ink4a or BCL2 reduced white matter GAL3+ DAM abundance and rejuvenated microglial fimbria organization. Our results demonstrate dynamic changes in microglial identity in aged white matter that can be reverted by senotherapeutic intervention to promote homeostatic maintenance in the aged brain.

18.
Hypertension ; 80(10): 2072-2087, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37593877

RESUMEN

BACKGROUND: Here, we assessed the role of cellular senescence and the senescence associated secretory phenotype (SASP) in age-related aortic stiffening and endothelial dysfunction. METHODS: We studied young (6-8 mo) and old (27-29 mo) p16-3MR mice, which allows for genetic-based clearance of senescent cells with ganciclovir (GCV). We also treated old C57BL/6N mice with the senolytic ABT-263. RESULTS: In old mice, GCV reduced aortic stiffness assessed by aortic pulse wave velocity (PWV; 477±10 vs. 382±7 cm/s, P<0.05) to young levels (old-GCV vs. young-vehicle, P=0.35); ABT-263 also reduced aortic PWV in old mice (446±9 to 356±11 cm/s, P<0.05). Aortic adventitial collagen was reduced by GCV (P<0.05) and ABT-263 (P=0.12) in old mice. To show an effect of the circulating SASP, we demonstrated that plasma exposure from Old-vehicle p16-3MR mice, but not from Old-GCV mice, induced aortic stiffening assessed ex vivo (elastic modulus; P<0.05). Plasma proteomics implicated glycolysis in circulating SASP-mediated aortic stiffening. In old p16-3MR mice, GCV increased endothelial function assessed via peak carotid artery endothelium-dependent dilation (EDD; Old-GCV, 94±1% vs. Old-vehicle, 84±2%, P<0.05) to young levels (Old-GCV vs. young-vehicle, P=0.98), and EDD was higher in old C57BL/6N mice treated with ABT-263 vs. vehicle (96±1% vs. 82±3%, P<0.05). Improvements in endothelial function were mediated by increased nitric oxide (NO) bioavailability (P<0.05) and reduced oxidative stress (P<0.05). Circulating SASP factors related to NO signaling were associated with greater NO-mediated EDD following senescent cell clearance. CONCLUSIONS: Cellular senescence and the SASP contribute to vascular aging and senolytics hold promise for improving age-related vascular function.


Asunto(s)
Senoterapéuticos , Enfermedades Vasculares , Ratones , Animales , Ratones Endogámicos C57BL , Análisis de la Onda del Pulso , Senescencia Celular , Envejecimiento , Arterias , Óxido Nítrico
19.
Aging Dis ; 2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37728586

RESUMEN

During cellular senescence, persistent growth arrest and changes in protein expression programs are accompanied by a senescence-associated secretory phenotype (SASP). In this study, we detected the upregulation of the SASP-related protein dipeptidyl peptidase 4 (DDP4) in human primary lung cells rendered senescent by exposure to ionizing radiation. DPP4 is an exopeptidase that plays a crucial role in the cleavage of various proteins, resulting in the loss of N-terminal dipeptides and proinflammatory effects. Interestingly, our data revealed an association between severe coronavirus disease 2019 (COVID-19) and DDP4, namely that DPP4 levels increased in the plasma of patients with COVID-19 and were correlated with age and disease progression. Although we could not determine the direct effect of DDP4 on viral replication, mechanistic studies in cell culture revealed a negative impact on the expression of the tight junction protein zonula occludens-1 (ZO-1), which contributes to epithelial barrier function. Mass spectrometry analysis indicated that DPP4 overexpressing cells exhibited a decrease in ZO-1 and increased expression of pro-inflammatory cytokines and chemokines. By investigating the effect of DPP4 on the barrier function of human primary cells, we detected an increase in ZO-1 using DPP4 inhibitors. These results provide an important contribution to our understanding of DPP4 in the context of senescence, suggesting that DPP4 plays a major role as part of the SASP. Our results provide evidence that cellular senescence, a hallmark of aging, has an important impact on respiratory infections.

20.
PLoS Genet ; 5(3): e1000414, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19293945

RESUMEN

We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.


Asunto(s)
Envejecimiento/genética , Longevidad/genética , Mapeo de Interacción de Proteínas , Proteómica/métodos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Biología Computacional/métodos , Humanos , Invertebrados , Músculos , Nematodos/genética , Nematodos/fisiología , Fenómenos Fisiológicos/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA