RESUMEN
BACKGROUND: FAP radiopharmaceuticals show promise for cancer diagnosis; however, their limited tumor residency hinders treatment. This study compared two FAPi derivatives, DOTA.SA.FAPi and DOTAGA.(SA.FAPi)2, labeled with gallium-68 and lutetium-177, aiming to determine an optimum combination for creating theranostic pairs. METHODS: The radiotracers were studied for lipophilicity, binding to human serum proteins, and binding to human cancer-associated fibroblasts (CAFs) in vitro, including saturation and internalization/externalization studies. PET/SPECT/CT and biodistribution studies were conducted in PC3 and U87MG xenografts for [68Ga]Ga-DOTA.SA.FAPi and [68Ga]Ga-DOTAGA.(SA.FAPi)2. [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2, were evaluated in PC3 xenografts. Biodistribution studies of [68Ga]Ga-DOTA.SA.FAPi were performed in healthy male and female mice. RESULTS: All radiotracers exhibited strong binding to FAP. Their internalization rate was fast while only [177Lu]Lu-DOTAGA.(SA.FAPi)2 was retained longer in CAFs. [68Ga]Ga-DOTAGA.(SA.FAPi)2 and [177Lu]Lu-DOTAGA.(SA.FAPi)2 displayed elevated lipophilicity and affinity for human serum proteins compared to [68Ga]Ga-DOTA.SA.FAPi and [177Lu]Lu-DOTA.SA.FAPi. In vivo studies revealed slower washout of [68Ga]Ga-DOTAGA.(SA.FAPi)2 within 3 h compared to [68Ga]Ga-DOTA.SA.FAPi. The tumor-to-tissue ratios of [68Ga]Ga-DOTAGA.(SA.FAPi)2 versus [68Ga]Ga-DOTA.SA.FAPi did not exhibit any significant differences. [177Lu]Lu-DOTAGA.(SA.FAPi)2 maintained a significant tumor uptake even after 96 h p.i. compared to [177Lu]Lu-DOTA.SA.FAPi. CONCLUSIONS: Dimeric compounds hold promise for therapy, while monomers are better suited for diagnostics. Finding the right combination is essential for effective disease management.
Asunto(s)
Endopeptidasas , Radioisótopos de Galio , Lutecio , Radioisótopos , Radiofármacos , Lutecio/química , Humanos , Animales , Ratones , Distribución Tisular , Radioisótopos/química , Radiofármacos/química , Radiofármacos/farmacocinética , Radiofármacos/farmacología , Radioisótopos de Galio/química , Línea Celular Tumoral , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Gelatinasas/antagonistas & inhibidores , Gelatinasas/metabolismo , Compuestos Heterocíclicos con 1 Anillo/química , Femenino , Masculino , Nanomedicina TeranósticaRESUMEN
PURPOSE: The present study aims at evaluating the preclinical and the clinical performance of [68Ga]Ga-DATA5m.SA.FAPi, which has the advantage to be labeled with gallium-68 at room temperature. METHODS: [68Ga]Ga-DATA5m.SA.FAPi was assessed in vitro on FAP-expressing stromal cells, followed by biodistribution and in vivo imaging on prostate and glioblastoma xenografts. Moreover, the clinical assessment of [68Ga]Ga-DATA5m.SA.FAPi was conducted on six patients with prostate cancer, aiming on investigating, biodistribution, biokinetics, and determining tumor uptake. RESULTS: [68Ga]Ga-DATA5m.SA.FAPi is quantitatively prepared in an instant kit-type version at room temperature. It demonstrated high stability in human serum, affinity for FAP in the low nanomolar range, and high internalization rate when associated with CAFs. Biodistribution and PET studies in prostate and glioblastoma xenografts revealed high and specific tumor uptake. Elimination of the radiotracer mainly occurred through the urinary tract. The clinical data are in accordance with the preclinical data concerning the organ receiving the highest absorbed dose (urinary bladder wall, heart wall, spleen, and kidneys). Different to the small-animal data, uptake of [68Ga]Ga-DATA5m.SA.FAPi in tumor lesions is rapid and stable and tumor-to-organ and tumor-to-blood uptake ratios are high. CONCLUSION: The radiochemical, preclinical, and clinical data obtained in this study strongly support further development of [68Ga]Ga-DATA5m.SA.FAPi as a diagnostic tool for FAP imaging.