RESUMEN
To date, there is no direct evidence of telomerase activity in adult lung epithelial cells, but typical culture conditions only support cell proliferation for 30-40 population doublings (PD), a point at which telomeres remain relatively long. Here we report that in in vitro low stress culture conditions consisting of a fibroblast feeder layer, rho-associated coiled coil protein kinase inhibitor (ROCKi), and low oxygen (2%), normal human bronchial epithelial basal progenitor cells (HBECs) divide for over 200 PD without engaging a telomere maintenance mechanism (almost four times the "Hayflick limit"). HBECs exhibit critically short telomeres at 200 PD and the population of cells start to undergo replicative senescence. Subcloning these late passage cells to clonal density, to mimic lung injury in vivo, selects for rare subsets of HBECs that activate low levels of telomerase activity to maintain short telomeres. CRISPR/Cas9 knockout of human telomerase reverse transcriptase or treatment with the telomerase-mediated telomere targeting agent 6-thio-2'deoxyguanosine abrogates colony growth in these late passage cultures (>200 PD) but not in early passage cultures (<200 PD). To our knowledge, this is the first study to report such long-term growth of HBECs without a telomere maintenance mechanism. This report also provides direct evidence of telomerase activation in HBECs near senescence when telomeres are critically short. This novel cell culture system provides an experimental model to understand how telomerase is regulated in normal adult tissues.
Asunto(s)
Bronquios/citología , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Senescencia Celular , Células Epiteliales/citología , Fibroblastos/citología , Telómero/fisiología , Adulto , Bronquios/fisiología , División Celular , Células Cultivadas , Células Epiteliales/fisiología , Fibroblastos/fisiología , Humanos , Telomerasa/metabolismo , Acortamiento del TelómeroRESUMEN
Telomerase is expressed in early human development and then becomes silenced in most normal tissues. Because ~90% of primary human tumors express telomerase and generally maintain very short telomeres, telomerase is carefully regulated, particularly in large, long-lived mammals. In the current report, we provide substantial evidence for a new regulatory control mechanism of the rate limiting catalytic protein component of telomerase (hTERT) that is determined by the length of telomeres. We document that normal, young human cells with long telomeres have a repressed hTERT epigenetic status (chromatin and DNA methylation), but the epigenetic status is altered when telomeres become short. The change in epigenetic status correlates with altered expression of TERT and genes near to TERT, indicating a change in chromatin. Furthermore, we identified a chromosome 5p telomere loop to a region near TERT in human cells with long telomeres that is disengaged with increased cell divisions as telomeres progressively shorten. Finally, we provide support for a role of the TRF2 protein, and possibly TERRA, in the telomere looping maintenance mechanism through interactions with interstitial TTAGGG repeats. This provides new insights into how the changes in genome structure during replicative aging result in an increased susceptibility to age-related diseases and cancer prior to the initiation of a DNA damage signal.
Asunto(s)
Envejecimiento/genética , Regulación Enzimológica de la Expresión Génica , Neoplasias/genética , Telomerasa/genética , Telómero , Animales , Cromosomas Humanos Par 5 , Humanos , Primates/genéticaRESUMEN
BACKGROUND: Alterations in pathways including BRAF, CDKN2A, and TERT contribute to the development of melanoma, but the sequence in which the genetic alterations occur and their prognostic significance remains unclear. To clarify the role of these pathways, we analyzed a primary melanoma and its metastasis. METHODS: Immunohistochemistry for BRAF-V600E, Sanger sequencing of BRAF and the TERT promoter, fluorescence in-situ hybridization, and telomere analyses were performed on a primary melanoma and its asynchronous cerebellar metastasis. Using the log-rank test and Cox-proportional model, the cancer genome atlas (TCGA) cohort of melanomas was analyzed for the effect of BRAF mutation and CDKN2A loss on survival. RESULTS: The primary melanoma expressed mutant BRAF-V600E and possessed a homozygous deletion of CDKN2A. In addition to these early defects, the metastatic lesion also possessed evidence of aneuploidy and an activating mutation of the TERT promoter. In the TCGA melanoma cohort, there was a non-significant trend toward poor prognosis in early stage cutaneous melanoma patients with concomitant BRAF mutation and CDKN2A loss. CONCLUSION: BRAF mutation and CDKN2A loss occurred early and TERT promoter mutation later in a case of lethal metastatic melanoma. The effects of these pathways on survival warrant further investigation in early stage cutaneous melanoma patients.
Asunto(s)
Genes p16 , Melanoma/genética , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/secundario , Proteínas Proto-Oncogénicas B-raf/genética , Telomerasa/genética , Adulto , Secuencia de Bases , Femenino , Estudios de Seguimiento , Humanos , Melanoma/patología , Mutación , Neoplasias Cutáneas , Adulto Joven , Melanoma Cutáneo MalignoRESUMEN
There are few effective treatments for small cell lung cancer (SCLC) underscoring the need for innovative therapeutic approaches. This study focuses on exploiting telomerase, a critical SCLC dependency as a therapeutic target. A prominent characteristic of SCLC is their reliance on telomerase activity, a key enzyme essential for their continuous proliferation. Here we utilize a nucleoside analog, 6-Thio-2'-deoxyguanosine (6TdG) currently in phase II clinical trials, that is preferentially incorporated by telomerase into telomeres leading to telomere dysfunction. Using preclinical mouse and human derived models we find low intermittent doses of 6TdG inhibit tumor growth and reduce metastatic burden. Anti-tumor efficacy correlates with a reduction in a subpopulation of cancer initiating like cells (CICs) identified by their expression of L1CAM/CD133 and highest telomerase activity. 6TdG treatment also leads to activation of innate and adaptive anti-tumor responses. Mechanistically, 6TdG depletes CICs and induces type-I interferon signaling leading to tumor immune visibility by activating tumor cell STING signaling. We also observe increased sensitivity to irradiation after 6TdG treatment in both syngeneic and humanized SCLC xenograft models both of which are dependent on the presence of host immune cells. This study underscores the immune-enhancing and metastasis-reducing effects of 6TdG, employing a range of complementary in vitro and in vivo SCLC preclinical models providing a potential therapeutic approach to SCLC.
Asunto(s)
Desoxiguanosina/análogos & derivados , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Telomerasa , Tionucleósidos , Humanos , Animales , Ratones , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , TelómeroRESUMEN
Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.
Asunto(s)
Carcinogénesis , Indoles , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-myc , Triptófano , Triptófano/metabolismo , Animales , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Indoles/metabolismo , Indoles/farmacología , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones , Carcinogénesis/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Quinurenina/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , MasculinoRESUMEN
Cancer stem cells (CSCs) are correlated with poor clinical outcomes due to their contribution to chemotherapy resistance and the formation of metastasis. Multiple cell surface and enzymatic markers have been characterized to identify CSCs, which is important for diagnosis, therapy, and prognosis. This review underlines the role of CSCs and circulating tumor cells (CTCs) in tumor relapse and metastasis, the characteristics of CSC and CTC biomarkers, and the techniques used to detect these cells. We also summarized novel therapeutic approaches toward targeting CSCs, especially focusing on the role of immune checkpoint blockades (ICB), such as anti-programmed death 1 (anti-PD1) and antiprogrammed death ligand-1 (anti-PDL1) therapies. Additionally, we address an intriguing new mechanism of action for small molecular drugs, such as telomere-targeted therapy 6-thio-2'deoxyguanosine (6- thio-dG), and how it reshapes tumor microenvironment to overcome ICB resistance. There are indications, that personalized cancer therapy targeting CSC populations in conjunction with immune-mediated strategy hold promise for the removal of residual therapy-resistant CSCs in the near future.
Asunto(s)
Células Neoplásicas Circulantes , Humanos , Biomarcadores/metabolismo , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Células Madre Neoplásicas/metabolismo , Microambiente TumoralRESUMEN
A select group of patients with hepatocellular carcinomas (HCC) benefit from surgical, radiologic, and systemic therapies that include a combination of anti-angiogenic and immune-checkpoint inhibitors. However, because HCC is generally asymptomatic in its early stages, this not only leads to late diagnosis, but also to therapy resistance. The nucleoside analogue 6-thio-dG (THIO) is a first-in-class telomerase-mediated telomere-targeting anticancer agent. In telomerase expressing cancer cells, THIO is converted into the corresponding 5'-triphosphate, which is efficiently incorporated into telomeres by telomerase, activating telomere damage responses and apoptotic pathways. Here, we show how THIO is effective in controlling tumor growth and, when combined with immune checkpoint inhibitors, is even more effective in a T-cell-dependent manner. We also show telomere stress induced by THIO increases both innate sensing and adaptive antitumor immunity in HCC. Importantly, the extracellular high-mobility group box 1 protein acts as a prototypical endogenous DAMP (Damage Associated Molecular Pattern) in eliciting adaptive immunity by THIO. These results provide a strong rationale for combining telomere-targeted therapy with immunotherapy.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerasa , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Telomerasa/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Telómero/genética , Inmunidad AdaptativaRESUMEN
PURPOSE: To investigate the therapeutic role of a novel telomere-directed inhibitor, 6-thio-2'-deoxyguanosine (THIO) in gliomas both in vitro and in vivo. EXPERIMENTAL DESIGN: A panel of human and mouse glioma cell lines was used to test therapeutic efficacy of THIO using cell viability assays, flow cytometric analyses, and immunofluorescence. Integrated analyses of RNA sequencing and reverse-phase protein array data revealed the potential antitumor mechanisms of THIO. Four patient-derived xenografts (PDX), two patient-derived organoids (PDO), and two xenografts of human glioma cell lines were used to further investigate the therapeutic efficacy of THIO. RESULTS: THIO was effective in the majority of human and mouse glioma cell lines with no obvious toxicity against normal astrocytes. THIO as a monotherapy demonstrated efficacy in three glioma cell lines that had acquired resistance to temozolomide. In addition, THIO showed efficacy in four human glioma cell lines grown as neurospheres by inducing apoptotic cell death. Mechanistically, THIO induced telomeric DNA damage not only in glioma cell lines but also in PDX tumor specimens. Integrated computational analyses of transcriptomic and proteomic data indicated that THIO significantly inhibited cell invasion, stem cell, and proliferation pathways while triggering DNA damage and apoptosis. Importantly, THIO significantly decreased tumor proliferation in two PDO models and reduced the tumor size of a glioblastoma xenograft and a PDX model. CONCLUSIONS: The current study established the therapeutic role of THIO in primary and recurrent gliomas and revealed the acute induction of telomeric DNA damage as a primary antitumor mechanism of THIO in gliomas.
Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Desoxiguanosina/análogos & derivados , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Humanos , Ratones , Nucleósidos/uso terapéutico , Proteómica , Tionucleósidos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Cell membrane transporters facilitate the passage of nucleobases and nucleosides for nucleotide synthesis and metabolism, and are important for the delivery of nucleoside analogues used in anticancer drug therapy. Here, we investigated if cell membrane transporters are involved in the cellular uptake of the nucleoside analogue DNA damage mediator 6-thio-2'-deoxyguanosine (6-thio-dG). A large panel of non-small cell lung cancer (NSCLC) cell lines (73 of 77) were sensitive to 6-thio-dG; only four NSCLC lines were resistant to 6-thio-dG. When analyzed by microarray and RNA sequencing, the resistant NSCLC cell lines clustered together, providing a molecular signature for patients that may not respond to 6-thio-dG. Significant downregulation of solute carrier family 43 A3 (SLC43A3), an equilibrative nucleobase transporter, was identified as a candidate in this molecular resistance signature. High levels of SLC43A3 mRNA predicted sensitivity to 6-thio-dG and therefore SLC43A3 could serve as a promising biomarker for 6-thio-dG sensitivity in patients with NSCLC. SIGNIFICANCE: These findings identify a biomarker of resistance to the telomeric DNA damage mediator 6-thio-2'-deoxyguanosine.
Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Sistemas de Transporte de Aminoácidos/metabolismo , Biomarcadores de Tumor/metabolismo , Desoxiguanosina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Tionucleósidos/farmacología , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/patología , Sistemas de Transporte de Aminoácidos/genética , Animales , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Desoxiguanosina/farmacología , Desoxiguanosina/uso terapéutico , Regulación hacia Abajo , Resistencia a Antineoplásicos , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Pulmón/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Ratones , ARN Interferente Pequeño/metabolismo , Telómero/efectos de los fármacos , Tionucleósidos/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Telomerase is an attractive target for anti-tumor therapy as it is almost universally expressed in cancer cells. Here, we show that treatment with a telomere-targeting drug, 6-thio-2'-deoxyguanosine (6-thio-dG), leads to tumor regression through innate and adaptive immune-dependent responses in syngeneic and humanized mouse models of telomerase-expressing cancers. 6-thio-dG treatment causes telomere-associated DNA damages that are sensed by dendritic cells (DCs) and activates the host cytosolic DNA sensing STING/interferon I pathway, resulting in enhanced cross-priming capacity of DCs and tumor-specific CD8+ T cell activation. Moreover, 6-thio-dG overcomes resistance to checkpoint blockade in advanced cancer models. Our results unveil how telomere stress increases innate sensing and adaptive anti-tumor immunity and provide strong rationales for combining telomere-targeting therapy with immunotherapy.
Asunto(s)
Desoxiguanosina/análogos & derivados , Proteínas de la Membrana/inmunología , Neoplasias/tratamiento farmacológico , Telomerasa/antagonistas & inhibidores , Telómero/genética , Tionucleósidos/farmacología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Desoxiguanosina/farmacología , Desoxiguanosina/uso terapéutico , Células HCT116 , Humanos , Inmunidad Innata/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/genética , Neoplasias/inmunología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Telomerasa/metabolismo , Telómero/enzimología , Tionucleósidos/uso terapéutico , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Carga Tumoral/inmunologíaRESUMEN
Brain tumors remain the leading cause of cancer-related deaths in children and often are associated with long-term sequelae among survivors of current therapies. Hence, there is an urgent need to identify actionable targets and to develop more effective therapies. Telomerase and telomeres play important roles in cancer, representing attractive therapeutic targets to treat children with poor-prognosis brain tumors such as diffuse intrinsic pontine glioma (DIPG), high-grade glioma (HGG), and high-risk medulloblastoma. We have previously shown that DIPG, HGG, and medulloblastoma frequently express telomerase activity. Here, we show that the telomerase-dependent incorporation of 6-thio-2'deoxyguanosine (6-thio-dG), a telomerase substrate precursor analogue, into telomeres leads to telomere dysfunction-induced foci (TIF) along with extensive genomic DNA damage, cell growth inhibition, and cell death of primary stem-like cells derived from patients with DIPG, HGG, and medulloblastoma. Importantly, the effect of 6-thio-dG is persistent even after drug withdrawal. Treatment with 6-thio-dG elicits a sequential activation of ATR and ATM pathways and induces G2-M arrest. In vivo treatment of mice bearing medulloblastoma xenografts with 6-thio-dG delays tumor growth and increases in-tumor TIFs and apoptosis. Furthermore, 6-thio-dG crosses the blood-brain barrier and specifically targets tumor cells in an orthotopic mouse model of DIPG. Together, our findings suggest that 6-thio-dG is a promising novel approach to treat therapy-resistant telomerase-positive pediatric brain tumors. Mol Cancer Ther; 17(7); 1504-14. ©2018 AACR.
Asunto(s)
Neoplasias Encefálicas/terapia , Neoplasias del Tronco Encefálico/terapia , Glioma/terapia , Telomerasa/genética , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/genética , Glioma/patología , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/terapia , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Pronóstico , Telomerasa/uso terapéutico , Telómero/efectos de los fármacos , Telómero/genética , Tionucleósidos/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Alternative splicing is dysregulated in cancer and the reactivation of telomerase involves the splicing of TERT transcripts to produce full-length (FL) TERT. Knowledge about the splicing factors that enhance or silence FL hTERT is lacking. We identified splicing factors that reduced telomerase activity and shortened telomeres using a siRNA minigene reporter screen and a lung cancer cell bioinformatics approach. A lead candidate, NOVA1, when knocked down resulted in a shift in hTERT splicing to non-catalytic isoforms, reduced telomerase activity, and progressive telomere shortening. NOVA1 knockdown also significantly altered cancer cell growth in vitro and in xenografts. Genome engineering experiments reveal that NOVA1 promotes the inclusion of exons in the reverse transcriptase domain of hTERT resulting in the production of FL hTERT transcripts. Utilizing hTERT splicing as a model splicing event in cancer may provide new insights into potentially targetable dysregulated splicing factors in cancer.
Asunto(s)
Empalme Alternativo , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Proteínas de Unión al ARN/genética , Telomerasa/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Biología Computacional , Eliminación de Gen , Silenciador del Gen , Ingeniería Genética , Genoma Humano , Células HeLa , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Mutación , Trasplante de Neoplasias , Antígeno Ventral Neuro-Oncológico , Fenotipo , Unión Proteica , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Telomerasa/metabolismo , Telómero/ultraestructuraRESUMEN
Targeting RAS is one of the greatest challenges in cancer therapy. Oncogenic mutations in NRAS are present in over 25% of melanomas and patients whose tumors harbor NRAS mutations have limited therapeutic options and poor prognosis. Thus far, there are no clinical agents available to effectively target NRAS or any other RAS oncogene. An alternative approach is to identify and target critical tumor vulnerabilities or non-oncogene addictions that are essential for tumor survival. We investigated the consequences of NRAS blockade in NRAS-mutant melanoma and show that decreased expression of the telomerase catalytic subunit, TERT, is a major consequence. TERT silencing or treatment of NRAS-mutant melanoma with the telomerase-dependent telomere uncapping agent, 6-thio-2'-deoxyguanosine (6-thio-dG), led to rapid cell death, along with evidence of both telomeric and non-telomeric DNA damage, increased ROS levels, and upregulation of a mitochondrial antioxidant adaptive response. Combining 6-thio-dG with the mitochondrial inhibitor Gamitrinib attenuated this adaptive response and more effectively suppressed NRAS-mutant melanoma. Our study uncovers a robust dependency of NRAS-mutant melanoma on TERT, and provides proof-of-principle for a new combination strategy to combat this class of tumors, which could be expanded to other tumor types.
Asunto(s)
GTP Fosfohidrolasas/genética , Melanoma/genética , Proteínas de la Membrana/genética , Mutación/genética , Telomerasa/genética , Animales , Antioxidantes/metabolismo , Línea Celular , Línea Celular Tumoral , Daño del ADN/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/genéticaRESUMEN
Standard and targeted cancer therapies for late-stage cancer patients almost universally fail due to tumor heterogeneity/plasticity and intrinsic or acquired drug resistance. We used the telomerase substrate nucleoside precursor, 6-thio-2'-deoxyguanosine (6-thio-dG), to target telomerase-expressing non-small cell lung cancer cells resistant to EGFR-inhibitors and commonly used chemotherapy combinations. Colony formation assays, human xenografts as well as syngeneic and genetically engineered immune competent mouse models of lung cancer were used to test the effect of 6-thio-dG on targeted therapy- and chemotherapy-resistant lung cancer human cells and mouse models. We observed that erlotinib-, paclitaxel/carboplatin-, and gemcitabine/cisplatin-resistant cells were highly sensitive to 6-thio-dG in cell culture and in mouse models. 6-thio-dG, with a known mechanism of action, is a potential novel therapeutic approach to prolong disease control of therapy-resistant lung cancer patients with minimal toxicities.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Telomerasa/metabolismo , Animales , Línea Celular Tumoral , Desoxiguanosina/análogos & derivados , Desoxiguanosina/farmacología , Femenino , Humanos , Ratones , Ratones Desnudos , Tionucleósidos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
Purpose: Telomerase promoter mutations are highly prevalent in human tumors including melanoma. A subset of patients with metastatic melanoma often fail multiple therapies, and there is an unmet and urgent need to prolong disease control for those patients.Experimental Design: Numerous preclinical therapy-resistant models of human and mouse melanoma were used to test the efficacy of a telomerase-directed nucleoside, 6-thio-2'-deoxyguanosine (6-thio-dG). Integrated transcriptomics and proteomics approaches were used to identify genes and proteins that were significantly downregulated by 6-thio-dG.Results: We demonstrated the superior efficacy of 6-thio-dG both in vitro and in vivo that results in telomere dysfunction, leading to apoptosis and cell death in various preclinical models of therapy-resistant melanoma cells. 6-thio-dG concomitantly induces telomere dysfunction and inhibits the expression level of AXL.Conclusions: In summary, this study shows that indirectly targeting aberrant telomerase in melanoma cells with 6-thio-dG is a viable therapeutic approach in prolonging disease control and overcoming therapy resistance. Clin Cancer Res; 24(19); 4771-84. ©2018 AACR See related commentary by Teh and Aplin, p. 4629.
Asunto(s)
Desoxiguanosina/análogos & derivados , Melanoma/tratamiento farmacológico , Regiones Promotoras Genéticas/genética , Telomerasa/genética , Tionucleósidos/farmacología , Animales , Línea Celular Tumoral , Desoxiguanosina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Mutación , Telómero/efectos de los fármacos , Telómero/genéticaRESUMEN
Improved methods to measure the shortest (not just average) telomere lengths (TLs) are needed. We developed Telomere Shortest Length Assay (TeSLA), a technique that detects telomeres from all chromosome ends from <1 kb to 18 kb using small amounts of input DNA. TeSLA improves the specificity and efficiency of TL measurements that is facilitated by user friendly image-processing software to automatically detect and annotate band sizes, calculate average TL, as well as the percent of the shortest telomeres. Compared with other TL measurement methods, TeSLA provides more information about the shortest telomeres. The length of telomeres was measured longitudinally in peripheral blood mononuclear cells during human aging, in tissues during colon cancer progression, in telomere-related diseases such as idiopathic pulmonary fibrosis, as well as in mice and other organisms. The results indicate that TeSLA is a robust method that provides a better understanding of the shortest length of telomeres.
Asunto(s)
Envejecimiento/genética , Neoplasias/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Telómero/genética , Adulto , Anciano , Animales , Southern Blotting , Femenino , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ/métodos , Masculino , Ratones , Persona de Mediana Edad , Células 3T3 NIH , Programas InformáticosRESUMEN
Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al., 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC- counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al., 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is analyzed by electrophoresis. TSNT is, an internal standard control, amplified by TS primer. NT is its own reverse primer, which is not a substrate for telomerase. These primers are used to identify false-negative results by if the gel lacks internal control bands.
RESUMEN
Telomerase maintains telomeric DNA in eukaryotes during early developments, ~90% of cancer cells and some proliferative stem like cells. Telomeric repeats at the end of chromosomes are associated with the shelterin complex. This complex consists of TRF1, TRF2, Rap1, TIN2, TPP1, POT1 which protect DNA from being recognized as DNA double-stranded breaks. Critically short telomeres or impaired shelterin proteins can cause telomere dysfunction, which eventually induces DNA damage responses at the telomeres. DNA damage responses can be identified by antibodies to 53BP1, gammaH2AX, Rad17, ATM, and Mre11. DNA damage foci at uncapped telomeres are referred to as Telomere dysfunction-Induced Foci (TIFs) (de Lange, 2005; Takai et al., 2003). The TIF assay is based on the co-localization detection of DNA damage by an antibody against DNA damage markers, such as gamma-H2AX, and telomeres using an antibody against one of the shelterin proteins such as TRF2 (Takai et al., 2003; de Lange, 2002; Karlseder et al., 1999). The method we describe here can be used in normal human and cancer cells. Other commonly used methods-Telomere Restriction Fragment (TRF) Analysis (Mender and Shay, 2015b) and Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015a)- in telomere biology can be found by clicking on the indicated links.
RESUMEN
While telomerase is expressed in ~90% of primary human tumors, most somatic tissue cells except transiently proliferating stem-like cells do not have detectable telomerase activity (Shay and Wright, 1996; Shay and Wright, 2001). Telomeres progressively shorten with each cell division in normal cells, including proliferating stem-like cells, due to the end replication (lagging strand synthesis) problem and other causes such as oxidative damage, therefore all somatic cells have limited cell proliferation capacity (Hayflick limit) (Hayflick and Moorhead, 1961; Olovnikov, 1973). The progressive telomere shortening eventually leads to growth arrest in normal cells, which is known as replicative senescence (Shay et al., 1991). Once telomerase is activated in cancer cells, telomere length is stabilized by the addition of TTAGGG repeats to the end of chromosomes, thus enabling the limitless continuation of cell division (Shay and Wright, 1996; Shay and Wright, 2001). Therefore, the link between aging and cancer can be partially explained by telomere biology. There are many rapid and convenient methods to study telomere biology such as Telomere Restriction Fragment (TRF), Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015b) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this protocol paper we describe Telomere Restriction Fragment (TRF) analysis to determine average telomeric length of cells. Telomeric length can be indirectly measured by a technique called Telomere Restriction Fragment analysis (TRF). This technique is a modified Southern blot, which measures the heterogeneous range of telomere lengths in a cell population using the length distribution of the terminal restriction fragments (Harley et al., 1990; Ouellette et al., 2000). This method can be used in eukaryotic cells. The description below focuses on the measurement of human cancer cells telomere length. The principle of this method relies on the lack of restriction enzyme recognition sites within TTAGGG tandem telomeric repeats, therefore digestion of genomic DNA, not telomeric DNA, with a combination of 6 base restriction endonucleases reduces genomic DNA size to less than 800 bp.
RESUMEN
Although telomerase is an almost universal target for cancer therapy, there has been no effective telomerase targeted inhibitor that has progressed to late stage human clinical trials. Recently, we reported that a telomerase-mediated telomere-disrupting compound, 6-thio-2'-deoxyguanosine (6-thio-dG), was very effective at targeting telomerase positive cancer cells while sparing telomerase silent normal cells. 6-thio-dG, a nucleoside analogue of the already-approved drug 6-thioguanine, is incorporated into telomeres by telomerase, resulting in disruption of the telomere-protecting shelterin complex. This disruption leads to Telomere dysfunction-Induced Foci (TIFs) formation and rapid cell death for the vast majority of cancer cells. Since most chemotherapies eventually fail due to drug acquired resistance, novel drugs such as 6-thio-dG, as a single first line agent or in the maintenance setting, may represent an effective new treatment for cancer patients.