Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Chem Soc Rev ; 53(5): 2388-2434, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38288870

RESUMEN

Green-hydrogen is considered a "key player" in the energy market for the upcoming decades. Among currently available hydrogen (H2) production processes, photoelectrochemical (PEC) water splitting has one of the lowest environmental impacts. However, it still presents prohibitively high production costs compared to more mature technologies, such as steam methane reforming. Therefore, the competitiveness of PEC water splitting must rely on its environmental and functional advantages, which are strongly linked to the reactor design, to the intrinsic properties of its components, and to their successful upscaling. This review gives special attention to the engineering aspects and categorizes PEC devices into four main types, according to the configuration of electrodes and strategies for gas separation: wired back-to-back, wireless back-to-back, wired side-by-side, and wired separated electrode membrane-free. Independently of the device architecture, the use of concentrated sunlight was found to be mandatory for achieving competitive green-H2 production. Additionally, feasible strategies for upscaling the key components of PEC devices, especially photoelectrodes, are urgently needed. In a pragmatic context, the way to move forward is to accept that PEC devices will operate close to their thermodynamic limits at large-scale, which requires a solid convergence between academics and industry. Research efforts must be redirected to: (i) build and demonstrate modular devices with a low-cost and highly recyclable embodiment; (ii) optimize thermal and power management; (iii) reduce ohmic losses; (iv) enhance the chemical stability towards a thousand hours; (v) couple solar concentrators with PEC devices; (vi) boost PEC-H2 production through the use of organic compounds; and (vii) reach consensual standardized methods for evaluating PEC devices, at both environmental and techno-economic levels. If these targets are not met in the next few years, the feasibility of PEC-H2 production and its acceptance by industry and by the general public will be seriously compromised.

2.
Chem Soc Rev ; 53(6): 3205, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38407406

RESUMEN

Correction for 'The route for commercial photoelectrochemical water splitting: a review of large-area devices and key upscaling challenges' by António Vilanova et al., Chem. Soc. Rev., 2024, https://doi.org/10.1039/d1cs01069g.

3.
Chemphyschem ; 21(16): 1814-1825, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32579732

RESUMEN

In this study, a homogeneous thin film growth of pentacene onto indium tin oxide (ITO) coated glass surfaces is explored using a high-resolution and reproducible vapor deposition methodology. Moreover, vacuum thermal evaporation of ionic liquids (ILs) ([C2 C1 im][NTf2 ] and [C2 C1 im][OTF]) onto ITO, gold/palladium (AuPd) and pentacene surfaces were performed. A greater wettability behavior of ILs is observed for surfaces containing AuPd. Sequential and simultaneous depositions of ILs and pentacene were explored. Simultaneous depositions lead to the formation of nanocomposites films, consisting of IL micro- and nanodroplets covered by pentacene layers. Plasma surface treatment was used to induce the ILs droplets coalescence and explore the dynamics and phase separation of the nanocomposites. The [C2 C1 im][OTF] droplets were found to be completely covered with pentacene, which suggests a great affinity between cation-anion pairs and the aromatic moiety. Pentacene films and their nanocomposites with ILs exhibit a typical optical band gap of Egap =1.77 eV, indicating that the nanocomposite phase domains are large enough to behavior as the bulk.

4.
Molecules ; 25(15)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752305

RESUMEN

In the field of gas separation and purification, membrane technologies compete with conventional purification processes on the basis of technical, economic and environmental factors. In this context, there is a growing interest in the development of carbon molecular sieve membranes (CMSM) due to their higher permeability and selectivity and higher stability in corrosive and high temperature environments. However, the industrial use of CMSM has been thus far hindered mostly by their relative instability in the presence of water vapor, present in a large number of process streams, as well as by the high cost of polymeric precursors such as polyimide. In this context, cellulosic precursors appear as very promising alternatives, especially targeting the production of CMSM for the separation of O2/N2 and CO2/CH4. For these two gas separations, cellulose-based CMSM have demonstrated performances well above the Robeson upper bound and above the performance of CMSM based on other polymeric precursors. Furthermore, cellulose is an inexpensive bio-renewable feed-stock highly abundant on Earth. This article reviews the major fabrication aspects of cellulose-based CMSM. Additionally, this article suggests a new tool to characterize the membrane performance, the Robeson Index. The Robeson Index, θ, is the ratio between the actual selectivity at the Robeson plot and the corresponding selectivity-for the same permeability-of the Robeson upper bound; the Robeson Index measures how far the actual point is from the upper bound.


Asunto(s)
Carbono , Celulosa , Gases/aislamiento & purificación , Membranas Artificiales , Diseño de Equipo , Equipo Reutilizado , Humedad , Hidrógeno/aislamiento & purificación , Compuestos Orgánicos , Oxígeno , Porosidad , Pirólisis , Propiedades de Superficie
5.
Chemphyschem ; 17(14): 2123-7, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27028765

RESUMEN

The morphology of micro- and nanodroplets and thin films of ionic liquids (ILs) prepared through physical vapor deposition is presented. The morphology of droplets deposited on indium-tin-oxide-coated glass is presented for the extended 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cn C1 im][Ntf2 ]; n=1-8) series, and the results show the nanostructuration of ILs. The use of in-vacuum energetic particles enhances/increases the nanodroplets mobility/coalescence mechanisms and can be a pathway to the fabrication of thin IL films.

6.
Phys Chem Chem Phys ; 18(7): 5232-43, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26813492

RESUMEN

The influence of a substrate on the performance of WO3 photoanodes is assessed as a function of temperature. Two samples were studied: WO3 deposited on a FTO glass and anodized on a tungsten foil. Current-voltage curves and electrochemical impedance spectroscopy measurements were used to characterize these samples between 25 °C and 65 °C. The photocurrent density increased with temperature for both samples and the onset potential shifted to lower potentials. However, for WO3/FTO, a negative shift of the dark current onset was also observed. The intrinsic resistivity of this substrate limits the photocurrent plateau potential range. On the other hand, this behavior was not observed for WO3/metal. Therefore, the earlier dark current onset observed for WO3/FTO was assigned to the FTO layer. The optimal operating temperatures observed were 45 °C and 55 °C for WO3/FTO and WO3/metal, respectively. For higher temperatures, the bulk electron-hole recombination phenomenon greatly affects the overall performance of WO3 photoanodes. The stability behavior was then studied at these temperatures over 72 h. For WO3/FTO, a crystalline-to-amorphous phase transformation occurred during the stability test, which may justify the current decrease observed after the aging period. The WO3/metal remained stable, maintaining its morphology and good crystallinity. Interestingly, the preferential orientation of the aged crystals was shifted to the (-222) and (222) planes, suggesting that this was responsible for its better and more stable performance. These findings provide crucial information for allowing further developments on the preparation of WO3 photoanodes, envisaging their commercial application in PEC water splitting cells.

7.
Angew Chem Int Ed Engl ; 55(25): 7142-7, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27151516

RESUMEN

The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination.

8.
Phys Chem Chem Phys ; 16(31): 16515-23, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24987751

RESUMEN

The electrochemical behavior of α-Fe2O3 photoelectrodes prepared by spray pyrolysis with different thicknesses was examined under dark and illumination conditions. The main charge transport phenomena occurring in the PEC cell photoelectrodes were characterized by electrochemical impedance spectroscopy (EIS) operating under dark conditions. The impedance spectra were fitted to an equivalent electrical circuit model for obtaining relevant information concerning reaction kinetics and charge transfer phenomena occurring at the semiconductor/electrolyte interface. A three-electrode configuration was used to carry out the electrochemical measurements allowing a detailed study concerning the double charged layer at the semiconductor/electrolyte interface that arises under dark conditions. The model parameters determined by EIS were then related to the film thickness to assess the role of electronic conduction in the performance of the cell. Moreover, by correlating the sample thickness differences with their electrochemical impedance spectroscopy response, it was possible to discriminate the two main phenomena occurring on semiconductor/electrolyte interfaces of photoelectrochemical systems under dark conditions: the space charge layer and the electrical double layer.

9.
J Digit Imaging ; 27(1): 33-40, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23917864

RESUMEN

The growing influx of patients in healthcare providers is the result of an aging population and emerging self-consciousness about health. In order to guarantee the welfare of all the healthcare stakeholders, it is mandatory to implement methodologies that optimize the healthcare providers' efficiency while increasing patient throughput and reducing patient's total waiting time. This paper presents a case study of a conventional radiology workflow analysis in a Portuguese healthcare provider. Modeling tools were applied to define the existing workflow. Re-engineered workflows were analyzed using the developed simulation tool. The integration of modeling and simulation tools allowed the identification of system bottlenecks. The new workflow of an imaging department entails a reduction of 41 % of the total completion time.


Asunto(s)
Citas y Horarios , Simulación por Computador/estadística & datos numéricos , Diagnóstico por Imagen/estadística & datos numéricos , Eficiencia Organizacional/estadística & datos numéricos , Admisión del Paciente/estadística & datos numéricos , Radiología/organización & administración , Humanos , Modelos Organizacionales , Portugal , Flujo de Trabajo
10.
RSC Adv ; 14(18): 12888-12896, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38650684

RESUMEN

Cellulose membranes were prepared from an EMIMAc ionic liquid solution by nonsolvent-induced phase separation (NIPS) in coagulation baths of water-acetone mixtures, ethanol-water mixtures and water at different temperatures. High water volume fractions in the coagulation bath result in a highly reproducible gel-like structure with inhomogeneities observed by small-angle neutron scattering (SANS). A structural transition of cellulose takes place in water-acetone baths at very low water volume fractions, while a higher water bath temperature increases the size of inhomogeneities in the gel-like structure. These findings demonstrate the value of SANS for characterising and understanding the structure of regenerated cellulose films in their wet state. Such insights can improve the engineering and structural tuning of cellulose membranes, either for direct use or as precursors for carbon molecular sieve membranes.

11.
ACS Appl Polym Mater ; 6(6): 3207-3221, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38544968

RESUMEN

This work describes first a 5-stack direct methanol fuel cell (DMFC) based on poly(3,4-ethylenedioxythiophene)-modified paper (PEDOT/PB-DMFC), which acts as an energy source and biosensor, coupled to an electrochromic cell (EC). It is autonomous and monitors the biosensor response by color change, as appropriate for point-of-care (POC) applications. In detail, DMFC strips were developed from square Whatman paper, and the EC was made on baking paper treated with polydimethylsiloxane (PDMS). The PEDOT/PB-DMFCs operate in a passive mode with a few microliters of diluted methanol. The biosensor layer was obtained on the anode ink (a composite of EDOT, oxidized multiwalled carbon nanotubes, and carbon black with platinum and ruthenium) by electropolymerizing 3,4-ethylenedioxythiophene (EDOT), in situ, in the presence of L1CAM. Each PEDOT/PB-DMFC single cell generates a voltage in the range of 0.3-0.35 V depending on the cell, and a five-cell stack delivers a 1.5-1.6 V voltage range when fed with 0.5 M methanol. The fabricated PEDOT/PB-DMFC/biosensor was calibrated against L1CAM, showing linear responses from 1.0 × 10-12 to 1.0 × 10-8 M with a detection limit of 1.17 × 10-13 M (single cell mode). When the EC was connected to the PEDOT/PB-DMFC device, a color gradient was observed. Overall, this work opens horizons to the use of biosensors even in places with energy scarcity and offers an alternative to reducing the current energy demand.

12.
ACS Appl Polym Mater ; 6(15): 8939-8949, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39144281

RESUMEN

Dye-sensitized solar cells (DSSCs) have recently entered the market for indoor photovoltaics. Fast electron injection from dye to titania, the lifetime of the excited dye, and the suppression of back electron recombination at the photoanode/electrolyte interface are crucial for a high photocurrent conversion efficiency (PCE). This study presents block copolymers of poly(4-vinylpyridine) and poly(styrene)-P4VP67-b-PSt x (x=23;61) as efficient accelerators of electron injection from dye to titania with extended lifetime excited states and long-lasting back electron recombination suppression. P4VP67-b-PSt23 and P4VP67-b-PSt61 rendered devices with PCEs of 10.0 and 9.8%, respectively, under AM 1.5G light; PCEs of 19.4 and 16.4% under 1000 lx LED light were attained. Copolymers provided a stable PCE with the two most popular I3 -/3I- electrolytes based on ACN and 3-methoxypropionitrile solvents; PCE history was tracked in the dark and under 1000 h of continuous light soaking with passive load according to ISOS-D1 and ISOS-L2 aging protocols, respectively. The impact of the polymer molecular structure on electron recombination, charge injection, dye anchoring, light absorption, photocurrent generation, and PCE and the long-term history of photovoltaic metrics are discussed.

13.
J Environ Manage ; 129: 522-39, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24018117

RESUMEN

This review provides a short introduction to photocatalysis technology in terms of the present environmental remediation paradigm and, in particular, NOx photoabatement. The fundamentals of photoelectrochemical devices and the photocatalysis phenomena are reviewed, highlighting the main reaction mechanisms. The critical historical developments on heterogeneous photocatalysis are briefly discussed, giving particular emphasis to the pioneer works in this field. The third part of this work focus mainly on NOx removal technology considering topics such as: TiO2 photochemistry; effect of the operating conditions on the photocatalysis process; Langmuir-Hinshelwood modeling; TiO2 photocatalytic immobilization approaches; and their applications. The last section of the paper presents the main conclusions and perspectives on the opportunities related to this technology.


Asunto(s)
Contaminantes Atmosféricos/química , Contaminación del Aire/prevención & control , Restauración y Remediación Ambiental/métodos , Óxidos de Nitrógeno/química , Fotólisis , Titanio/química
14.
Talanta ; 257: 124340, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36809692

RESUMEN

An early diagnosis is the gold standard for cancer survival. Biosensors have proven their effectiveness in monitoring cancer biomarkers but are still limited to a series of requirements. This work proposes an integrated power solution, with an autonomous and self-signaling biosensing device. The biorecognition element is produced in situ by molecular imprinting to detect sarcosine, a known biomarker for prostate cancer. The biosensor was assembled on the counter-electrode of a dye-sensitized solar cell (DSSC), simultaneously using EDOT and Pyrrole as monomers for the biomimetic process and the catalytic reduction of triiodide in the DSSC. After the rebinding assays, the hybrid DSSC/biosensor displayed a linear behavior when plotting the power conversion efficiency (PCE) and the charge transfer resistance (RCT) against the logarithm of the concentration of sarcosine. The latter obtained a sensitivity of 0.468 Ω/decade of sarcosine concentration, with a linear range between 1 ng/mL and 10 µg/mL, and a limit of detection of 0.32 ng/mL. When interfacing an electrochromic cell, consisting of a PEDOT-based material, with the hybrid device, a color gradient between 1 ng/mL and 10 µg/mL of sarcosine was observed. Thus, the device can be used anywhere with access to a light source, completely equipment-free, suitable for point-of-care analysis and capable of detecting sarcosine within a range of clinical interest.


Asunto(s)
Técnicas Biosensibles , Sarcosina , Masculino , Humanos , Sarcosina/análisis , Técnicas Electroquímicas , Límite de Detección , Biomarcadores de Tumor , Colorantes
15.
Dalton Trans ; 52(41): 14762-14773, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37548588

RESUMEN

A new series of Zn(II) and Cu(II)-based porphyrin complexes 5a and 5b doubly functionalised with carbazole units were developed to be used as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). These complexes were obtained via a nucleophilic substitution reaction mediated by PhI(OAc)2/NaAuCl4·2H2O, or using C-N transition metal-assisted coupling. The hole extraction capability of 5a and 5b was assessed using cyclic voltammetry; this study confirmed the better alignment of the Zn(II) complex 5a with the perovskite valence band level, compared to the Cu(II) complex 5b. The optimised geometry and molecular orbitals of both complexes also corroborate the higher potential of 5a as a HTM. Photoluminescence characterisation showed that the presence of 5a and 5b as HTMs on the perovskite surface resulted in the quenching of the emission, matching the hole transfer phenomenon. The photovoltaic performance was evaluated and compared with those of reference cells made with the standard HTM spiro-OMeTAD. The optimised 5-based devices showed improvements in all photovoltaic characteristics; their open circuit voltage (Voc) reached close to 1 V and short-circuit current density (Jsc) values were 13.79 and 9.14 mA cm-2 for 5a and 5b, respectively, disclosing the effect of the metallic centre. A maximum power conversion efficiency (PCE) of 10.01% was attained for 5a, which is 65% of the PCE generated by using the spiro-OMeTAD reference. This study demonstrates that C-N linked donor-type porphyrin derivatives are promising novel HTMs for developing efficient and reproducible PSCs.

16.
ACS Appl Energy Mater ; 5(6): 7220-7229, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-36569782

RESUMEN

Dye-sensitized solar cells (DSSCs) emerged in the market as one of the most promising indoor photovoltaic technologies to address the need for wireless powering of low-consuming electronics and sensor nodes of the internet of things (IoT). The monolithic design structure of the cell (M-DSSCs) makes the devices simpler and cheaper, and it is straightforward for constructing in-series modules. The most efficient DSSCs reported so far are Co(III/II)-mediated liquid junction cells with acetonitrile electrolytes; however, they are mostly unstable. This study reports on highly stable cobalt-mediated M-DSSCs, passing thermal cycling tests up to 85 °C according to ISOS standard protocols. Under 1000 h of aging in the dark and under simulated solar and artificial light soaking, all tested cells improved or retained their initial power conversion efficiency. Advanced long-term stability was achieved by eliminating the extrinsic factors of degradation, such as the interaction of the cell components with the environment and electrolyte leakage. This was obtained by encapsulation of the devices using a glass-frit sealant, including the holes for filling up the liquid components of the cells. The hermeticity of the encapsulation complies with the MIL-STD-883 standard fine helium gas leakage test, and its hermeticity remained unchanged after humidity-freeze cycles according to IEC 61646. The elimination of extrinsic degradation factors allowed reliable assessment of inner factors accountable for aging. The impact of the ISOS-protocol test conditions on the intrinsic device stability and long-term photovoltaic history of the M-DSSCs is discussed.

17.
Membranes (Basel) ; 12(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35207118

RESUMEN

Membrane research in Portugal is aligned with global concerns and expectations for sustainable social development, thus progressively focusing on the use of natural resources and renewable energy. This review begins by addressing the pioneer work on membrane science and technology in Portugal by the research groups of Instituto Superior Técnico-Universidade de Lisboa (IST), NOVA School of Science and Technology-Universidade Nova de Lisboa (FCT NOVA) and Faculdade de Engenharia-Universidade do Porto (FEUP) aiming to provide an historical perspective on the topic. Then, an overview of the trends and challenges in membrane processes and materials, mostly in the last five years, involving Portuguese researchers, is presented as a contribution to a more sustainable water-energy-material-food nexus.

18.
J Nanosci Nanotechnol ; 11(10): 9016-24, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22400295

RESUMEN

Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.

19.
Open Res Eur ; 1: 81, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37645145

RESUMEN

Aqueous-phase reforming (APR) can convert methanol and other oxygenated hydrocarbons to hydrogen and carbon dioxide at lower temperatures when compared with the corresponding gas phase process. APR favours the water-gas shift (WGS) reaction and inhibits alkane formation; moreover, it is a simpler and more energy efficient process compared to gas-phase steam reforming. For example, Pt-based catalysts supported on alumina are typically selected for methanol APR, due to their high activity at temperatures of circa 200°C. However, non-noble catalysts such as nickel (Ni) supported on metal-oxides or zeolites are being investigated with promising results in terms of catalytic activity and stability. The development of APR kinetic models and reactor designs is also being addressed to make APR a more attractive process for producing in situ hydrogen. This can also lead to the possibility of APR integration with high-temperature proton exchange membrane fuel cells. The integration can result into increased overall system efficiency and avoiding critical issues faced in the state-of-the-art fuel cells integrated with methanol steam reforming.

20.
Nanomaterials (Basel) ; 11(12)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34947716

RESUMEN

The impact of several solvent processing additives (1-chloronaphthalene, methylnaphthalene, hexadecane, 1-phenyloctane, and p-anisaldehyde), 3% v/v in o-dichlorobenzene, on the performance and morphology of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2',5',22033,5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM)-based polymer solar cells was investigated. Some additives were shown to enhance the power conversion efficiency (PCE) by ~6%, while others decreased the PCE by ~17-25% and a subset of the additives tested completely eliminated any power conversion efficiency and the operation as a photovoltaic device. Grazing-Incidence Wide Angle X-ray Scattering (GIWAXS) revealed a clear stepwise variation in the crystallinity of the systems when changing the additive between the two extreme situations of maximum PCE (1-chloronaphthalene) and null PCE (hexadecane). Small-Angle Neutron Scattering (SANS) revealed that the morphology of devices with PCE ~0% was composed of large domains with correlation lengths of ~30 nm, i.e., much larger than the typical exciton diffusion length (~12 nm) in organic semiconductors. The graded variations in crystallinity and in nano-domain size observed between the two extreme situations (1-chloronaphthalene and hexadecane) were responsible for the observed graded variations in device performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA