Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.182
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(4): 1014-1030.e19, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343900

RESUMEN

Although current immune-checkpoint therapy (ICT) mainly targets lymphoid cells, it is associated with a broader remodeling of the tumor micro-environment. Here, using complementary forms of high-dimensional profiling, we define differences across all hematopoietic cells from syngeneic mouse tumors during unrestrained tumor growth or effective ICT. Unbiased assessment of gene expression of tumor-infiltrating cells by single-cell RNA sequencing (scRNAseq) and longitudinal assessment of cellular protein expression by mass cytometry (CyTOF) revealed significant remodeling of both the lymphoid and myeloid intratumoral compartments. Surprisingly, we observed multiple subpopulations of monocytes/macrophages, distinguishable by the markers CD206, CX3CR1, CD1d, and iNOS, that change over time during ICT in a manner partially dependent on IFNγ. Our data support the hypothesis that this macrophage polarization/activation results from effects on circulatory monocytes and early macrophages entering tumors, rather than on pre-polarized mature intratumoral macrophages.


Asunto(s)
Linfocitos/inmunología , Células Mieloides/inmunología , Neoplasias/inmunología , Análisis de la Célula Individual , Transcriptoma , Animales , Línea Celular Tumoral , Citometría de Flujo , Inmunoterapia/métodos , Interferón gamma/inmunología , Activación de Macrófagos , Masculino , Espectrometría de Masas , Ratones , Células Precursoras de Monocitos y Macrófagos/inmunología , Neoplasias/terapia
2.
Mol Cell ; 81(19): 4059-4075.e11, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34437837

RESUMEN

DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.


Asunto(s)
Linfocitos B/enzimología , ARN Helicasas DEAD-box/metabolismo , Linfoma de Células B/enzimología , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteínas Proto-Oncogénicas c-myc/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Linfocitos B/patología , Línea Celular Tumoral , Niño , Preescolar , ARN Helicasas DEAD-box/genética , Estrés del Retículo Endoplásmico , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación con Pérdida de Función , Linfoma de Células B/genética , Linfoma de Células B/patología , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/genética , Proteínas de Neoplasias/genética , Biosíntesis de Proteínas , Proteoma , Proteostasis , Proteínas Proto-Oncogénicas c-myc/genética , Adulto Joven
4.
Nucleic Acids Res ; 52(D1): D72-D80, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37904589

RESUMEN

G-quadruplexes (G4s) are non-canonical four-stranded structures and are emerging as novel genetic regulatory elements. However, a comprehensive genomic annotation of endogenous G4s (eG4s) and systematic characterization of their regulatory network are still lacking, posing major challenges for eG4 research. Here, we present EndoQuad (https://EndoQuad.chenzxlab.cn/) to address these pressing issues by integrating high-throughput experimental data. First, based on high-quality genome-wide eG4s mapping datasets (human: 1181; mouse: 24; chicken: 2) generated by G4 ChIP-seq/CUT&Tag, we generate a reference set of genome-wide eG4s. Our multi-omics analyses show that most eG4s are identified in one or a few cell types. The eG4s with higher occurrences across samples are more structurally stable, evolutionarily conserved, enriched in promoter regions, mark highly expressed genes and associate with complex regulatory programs, demonstrating higher confidence level for further experiments. Finally, we integrate millions of functional genomic variants and prioritize eG4s with regulatory functions in disease and cancer contexts. These efforts have culminated in the comprehensive and interactive database of experimentally validated DNA eG4s. As such, EndoQuad enables users to easily access, download and repurpose these data for their own research. EndoQuad will become a one-stop resource for eG4 research and lay the foundation for future functional studies.


Asunto(s)
Bases de Datos Genéticas , G-Cuádruplex , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Humanos , Ratones , Genoma , Genómica
5.
J Biol Chem ; 300(4): 106791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403247

RESUMEN

DNA modifications add another layer of complexity to the eukaryotic genome to regulate gene expression, playing critical roles as epigenetic marks. In eukaryotes, the study of DNA epigenetic modifications has been confined to 5mC and its derivatives for decades. However, rapid developing approaches have witnessed the expansion of DNA modification reservoirs during the past several years, including the identification of 6mA, 5gmC, 4mC, and 4acC in diverse organisms. However, whether these DNA modifications function as epigenetic marks requires careful consideration. In this review, we try to present a panorama of all the DNA epigenetic modifications in eukaryotes, emphasizing recent breakthroughs in the identification of novel DNA modifications. The characterization of their roles in transcriptional regulation as potential epigenetic marks is summarized. More importantly, the pathways for generating or eliminating these DNA modifications, as well as the proteins involved are comprehensively dissected. Furthermore, we briefly discuss the potential challenges and perspectives, which should be taken into account while investigating novel DNA modifications.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Eucariontes , Humanos , Eucariontes/genética , Eucariontes/metabolismo , Animales , ADN/metabolismo , ADN/genética , ADN/química
6.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37232385

RESUMEN

The volume of ribonucleic acid (RNA)-seq data has increased exponentially, providing numerous new insights into various biological processes. However, due to significant practical challenges, such as data heterogeneity, it is still difficult to ensure the quality of these data when integrated. Although some quality control methods have been developed, sample consistency is rarely considered and these methods are susceptible to artificial factors. Here, we developed MassiveQC, an unsupervised machine learning-based approach, to automatically download and filter large-scale high-throughput data. In addition to the read quality used in other tools, MassiveQC also uses the alignment and expression quality as model features. Meanwhile, it is user-friendly since the cutoff is generated from self-reporting and is applicable to multimodal data. To explore its value, we applied MassiveQC to Drosophila RNA-seq data and generated a comprehensive transcriptome atlas across 28 tissues from embryogenesis to adulthood. We systematically characterized fly gene expression dynamics and found that genes with high expression dynamics were likely to be evolutionarily young and expressed at late developmental stages, exhibiting high nonsynonymous substitution rates and low phenotypic severity, and they were involved in simple regulatory programs. We also discovered that human and Drosophila had strong positive correlations in gene expression in orthologous organs, revealing the great potential of the Drosophila system for studying human development and disease.


Asunto(s)
Drosophila melanogaster , Transcriptoma , Humanos , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica/métodos , ARN/genética , RNA-Seq , Análisis de Secuencia de ARN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Drosophila
7.
Nature ; 574(7780): 696-701, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645760

RESUMEN

The ability of the immune system to eliminate and shape the immunogenicity of tumours defines the process of cancer immunoediting1. Immunotherapies such as those that target immune checkpoint molecules can be used to augment immune-mediated elimination of tumours and have resulted in durable responses in patients with cancer that did not respond to previous treatments. However, only a subset of patients benefit from immunotherapy and more knowledge about what is required for successful treatment is needed2-4. Although the role of tumour neoantigen-specific CD8+ T cells in tumour rejection is well established5-9, the roles of other subsets of T cells have received less attention. Here we show that spontaneous and immunotherapy-induced anti-tumour responses require the activity of both tumour-antigen-specific CD8+ and CD4+ T cells, even in tumours that do not express major histocompatibility complex (MHC) class II molecules. In addition, the expression of MHC class II-restricted antigens by tumour cells is required at the site of successful rejection, indicating that activation of CD4+ T cells must also occur in the tumour microenvironment. These findings suggest that MHC class II-restricted neoantigens have a key function in the anti-tumour response that is nonoverlapping with that of MHC class I-restricted neoantigens and therefore needs to be considered when identifying patients who will most benefit from immunotherapy.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Neoplasias Experimentales/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunoterapia , Ratones , Neoplasias Experimentales/terapia
8.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38124544

RESUMEN

Physical exercise has been shown to have an impact on memory and hippocampal function across different age groups. Nevertheless, the influence and mechanisms underlying how voluntary exercise during puberty affects memory are still inadequately comprehended. This research aims to examine the impacts of self-initiated physical activity throughout adolescence on spatial memory. Developing mice were exposed to a 4-wk voluntary wheel running exercise protocol, commencing at the age of 30 d. After engaging in voluntary wheel running exercise during development, there was an enhancement in spatial memory. Moreover, hippocampal dentate gyrus and CA3 neurons rather than CA1 neurons exhibited an increase in the miniature excitatory postsynaptic currents and miniature inhibitory postsynaptic currents. In addition, there was an increase in the expression of NR2A/NR2B subunits of N-methyl-D-aspartate receptors and α1GABAA subunit of gamma-aminobutyric acid type A receptors, as well as dendritic spine density, specifically within dentate gyrus and CA3 regions rather than CA1 region. The findings suggest that voluntary exercise during development can enhance spatial memory in mice by increasing synapse numbers and improving synaptic transmission in hippocampal dentate gyrus and CA3 regions, but not in CA1 region. This study sheds light on the neural mechanisms underlying how early-life exercise improves cognitive function.


Asunto(s)
Giro Dentado , Memoria Espacial , Ratones , Animales , Giro Dentado/metabolismo , Actividad Motora , Maduración Sexual , Hipocampo/metabolismo , Transmisión Sináptica/fisiología
9.
J Mol Cell Cardiol ; 186: 57-70, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984156

RESUMEN

BACKGROUND: Macrophage-derived foam cells are a hallmark of atherosclerosis. Scavenger receptors, including lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (OLR-1), are the principal receptors responsible for the uptake and modification of LDL, facilitating macrophage lipid load and the uptake of oxidized LDL by arterial wall cells. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates the expression of genes by binding to the promoter during transcription. Therefore, this study aimed to investigate the precise role of macrophage KLF15 in atherogenesis. METHODS: We used two murine models of atherosclerosis: mice injected with an adeno-associated virus (AAV) encoding the Asp374-to-Tyr mutant version of human PCSK9, followed by 12 weeks on a high-fat diet (HFD), and ApoE-/-- mice on a HFD. We subsequently injected mice with AAV-KLF15 and AAV-LacZ to assess the role of KLF15 in the development of atherosclerosis in vivo. Oil Red O, H&E, and Masson's trichome staining were used to evaluate atherosclerotic lesions. Western blots and RT-qPCR were used to assess protein and mRNA levels, respectively. RESULTS: We determined that KLF15 expression was downregulated during atherosclerosis formation, and KLF15 overexpression prevented atherosclerosis progression. KLF15 expression levels did not affect body weight or serum lipid levels in mice. However, KLF15 overexpression in macrophages prevented foam cell formation by reducing OLR-1-meditated lipid uptake. KLF15 directly targeted and transcriptionally downregulated OLR-1 levels. Restoration of OLR-1 reversed the beneficial effects of KLF15 in atherosclerosis. CONCLUSION: Macrophage KLF15 transcriptionally downregulated OLR-1 expression to reduce lipid uptake, thereby preventing foam cell formation and atherosclerosis. Thus, our results suggest that KLF15 is a potential therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis , Células Espumosas , Humanos , Ratones , Animales , Células Espumosas/metabolismo , Proproteína Convertasa 9/metabolismo , Macrófagos/metabolismo , Aterosclerosis/patología , Lipoproteínas LDL/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
10.
J Am Chem Soc ; 146(5): 3545-3552, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38277257

RESUMEN

Atom-precise metal nanoclusters (NCs) with large bulk (nuclearity >60) are important species for insight into the embryonic phase of metal nanoparticles and their top-down etching synthesis. Herein, we report a metastable rod-shaped 70-nuclei copper-hydride NC, [Cl@Cu70H22(PhC≡C)29(CF3COO)16]2+ (Cu70), with Cl- as the template, in which the Cl@Cu59 kernel adopts a distinctive metal packing mode along the bipolar direction, and the protective ligand shell exhibits corresponding site differentiation. In terms of metal nuclearity, Cu70 is the largest alkynyl-stabilized Cu-hydride cluster to date. As a typical highly active intermediate, Cu70 could undergo a transformation into a series of robust modularly assembled Cu clusters (B-type Cu8, A-A-type Cu22, A-B-type Cu23, and A-B-A-type Cu38) upon etching by p-tert-butylthiacalix[4]arene (H4TC4A), which could not be achieved by "one-pot" synthetic methods. Notably, the patterns of A and B blocks in the Cu NCs could be effectively modulated by employing appropriate counterions and blockers, and the modular assembly mechanism was illustrated through comprehensive solution chemistry analysis using HR-ESI-MS. Furthermore, catalytic investigations reveal that Cu38 could serve as a highly efficient catalyst for the cycloaddition of propargylic amines with CO2 under mild conditions. This work not only enriched the family of high-nuclear copper-hydride NCs but also provided new insights into the growth mechanism of metal NCs.

11.
Apoptosis ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478171

RESUMEN

Prostate cancer (PCa) is one of the most common cancers affecting the health of men worldwide. Castration-resistant prostate cancer (CRPC), the advanced and refractory phase of prostate cancer, has multiple mechanisms of resistance to androgen deprivation therapy (ADT) such as AR mutations, aberrant androgen synthase, and abnormal expression of AR-related genes. Based on the research of the AR pathway, new drugs for the treatment of CRPC have been developed in clinical practice, such as Abiraterone and enzalutamide. However, many areas in this pathway are still worth exploring. In this study, single-cell sequencing analysis was utilized to scrutinize significant genes in the androgen receptor (AR) pathway related to CRPC. Our analysis of single-cell sequencing combined with bulk-cell sequencing revealed a substantial downregulation of AR-regulated AFF3 in CRPC. Overexpression of AFF3 restricted the proliferation and migration of prostate cancer cells whilst also increasing their sensitivity towards enzalutamide, while knockdown of AFF3 had the opposite effect. To elucidate the mechanism of tumor inhibition by AFF3, we applied GSVA and GSEA to investigate the metabolic pathways related to AFF3 and revealed that AFF3 had an impact on fatty acids metabolism and ferroptosis through the regulation of ACSL4 protein expression. Based on correlation analysis and flow cytometry, we can speculate that AFF3 can impact the sensitivity of the CRPC cell lines to the ferroptosis inducer (RSL3) by regulating ACSL4. Therefore, our findings may provide new insights into the mechanisms of drug resistance in CRPC, and AFF3 may serve as a novel prognostic biomarker in prostate cancer.

12.
Anal Chem ; 96(24): 10013-10020, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38836548

RESUMEN

Traditional methods for the detection of pathogenic bacteria are time-consuming, less efficient, and sensitive, which affects infection control and bungles illness. Therefore, developing a method to remedy these problems is very important in the clinic to diagnose the pathogenic diseases and guide the rational use of antibiotics. Here, microfluidic electrochemical integrated sensor (MEIS) has been investigated, functionally for rapid, efficient separation and sensitive detection of pathogenic bacteria. Three-dimensional macroporous PDMS and Au nanotube-based electrode are successfully assembled into the modeling microchip, playing the functions of "3D chaotic flow separator" and "electrochemical detector," respectively. The 3D chaotic flow separator enhances the turbulence of the fluid, achieving an excellent bacteria capture efficiency. Meanwhile, the electrochemical detector provides a quantitative signal through enzyme-linked immunoelectrochemistry with improved sensitivity. The microfluidic electrochemical integrated sensor could successfully isolate Candida albicans (C. albicans) in the range of 30-3,000,000 CFU in the saliva matrix with over 95% capture efficiency and sensitively detect C. albicans in 1 h in oral saliva samples. The integrated device demonstrates great potential in the diagnosis of oral candidiasis and is also applicable in the detection of other pathogenic bacteria.


Asunto(s)
Candida albicans , Técnicas Electroquímicas , Candida albicans/aislamiento & purificación , Técnicas Electroquímicas/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Saliva/microbiología , Saliva/química , Electrodos , Humanos , Oro/química
13.
Am J Pathol ; 193(4): 430-441, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36690077

RESUMEN

Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, is implicated in intervertebral disc degeneration (IDD). The current study explored the role of Fer-1 in IDD via the toll-like receptor 4 (TLR4)/NF-κB signaling pathway. IDD-related gene expression microarray GSE124272 and high-throughput sequencing data set GSE175710 were obtained through the Gene Expression Omnibus database. Differentially expressed genes in IDD were identified, followed by implementation of protein-protein interaction network analysis and receiver operating characteristic curve analysis. The main pathways in IDD were obtained through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analyses, and target genes of Fer-1 were obtained through PubChem and PharmMapper websites. Finally, GPX4, FTH, and TLR4 expression was determined in a IDD rat model. Three key co-expression modules involved in IDD were obtained through Weighted Gene Co-Expression Network Analysis. Thirteen differentially expressed genes were found to be associated with IDD, and eight key genes (TLR4, BCL2A1, CXCL1, IL1R1, NAMPT, SOCS3, XCL1, and IRAK3) were found to affect IDD. These eight key genes had the diagnostic potential for IDD. The NF-κB signaling pathway was shown to play a predominant role in IDD development. Network pharmacologic analysis indicated a role of Fer-1 in suppressing ferroptosis and ameliorating IDD via the TLR4/NF-κB signaling pathway, which was verified by an in vivo animal experiment. The study showed that Fer-1 down-regulates TLR4 to inactivate NF-κB signaling pathway, suppressing ferroptosis and ultimately alleviating IDD in rats.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Ratas , Animales , FN-kappa B/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Transducción de Señal/fisiología
14.
Opt Express ; 32(7): 12012-12023, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571036

RESUMEN

We demonstrated a narrow linewidth semiconductor laser based on a deep-etched sidewall grating active distributed Bragg reflector (SG-ADBR). The coupling coefficients and reflectance were numerically simulated for deep-etched fifth-order SG-ADBR, and a reflectance of 0.86 with a bandwidth of 1.04 nm was obtained by the finite element method for a 500-period SG-ADBR. Then the fifth-order SG-ADBR lasers were fabricated using projection i-line lithography processes. Single-mode lasing at 1537.9 nm was obtained with a high side-mode suppression ratio (SMSR) of 65 dB, and a continuous tuning range of 10.3 nm was verified with SMSRs greater than 53 dB. Furthermore, the frequency noise power spectral density was characterized, from which a Lorentzian linewidth of 288 kHz was obtained.

15.
Opt Express ; 32(11): 20153-20165, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859132

RESUMEN

We propose and demonstrate a high-speed directly modulated laser based on a hybrid deformed-square-FP coupled cavity (DFC), aiming for a compact-size low-cost light source in next-generation optical communication systems. The deformed square microcavity is directly connected to the FP cavity and utilized as a wavelength-sensitive reflector with a comb-like and narrow-peak reflection spectrum for selecting the lasing mode, which can greatly improve the single-mode yield of the laser and the quality (Q) factor of the coupled mode. By optimizing the device design and operating condition, the modulation bandwidth of the DFC laser can be enhanced due to the intracavity-mode photon-photon resonance effect. Our experimental results show an enhancement of 3-dB modulation bandwidth from 19.3 GHz to 30 GHz and a clear eye diagram at a modulation rate of 25 Gbps.

16.
Crit Rev Immunol ; 43(1): 13-26, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522558

RESUMEN

Our recent studies indicated that amyotrophic lateral sclerosis (ALS) patients suffer from significantly elevated levels of interferon-gamma (IFN-γ) secretion by natural killer (NK) and CD8+ T cells, which may be responsible for the immune-pathologies seen in central nervous system and in peripheral organs of the patients. In order to counter such elevated induction of IFN-γ in patients we designed a treatment strategy to increase anti-inflammatory cytokine interleukin-10 (IL-10) by the use of probiotic strains which significantly increase the levels of IL-10. Therefore, in this paper we demonstrate disease specific functions of Al-Pro (AJ3) formulated for the adjunct treatment of auto-immune diseases including ALS, and compared the function with CA/I-Pro (AJ4) for the treatment of cancer and viral diseases, and NK-CLK (AJ2) for maintenance of immune balance and promotion of disease prevention. The three different formulations of probiotic bacteria have distinct profiles of activation of peripheral blood mononuclear cells (PBMCs), NK, and CD8+ T cells, and their induced activation is different from those mediated by either IL-2 or IL-2 + anti-CD16 monoclonal antibodies (mAbs) or IL-2 + anti-CD3/CD28 mAbs. IL-2 + anti-CD16 mAb activation of PBMCs and NK cells had the highest IFN-γ/IL-10 ratio, whereas IL-2 combination with sAJ4 had the next highest followed by IL-2 + sAJ2 and the lowest was seen with IL-2 + sAJ3. Accordingly, the highest secretion of IFN-γ was seen when the PBMCs and NK cells were treated with IL-2 + sAJ4, intermediate for IL-2 + sAJ2 and the lowest with IL-2 + sAJ3. The levels of IFN-γ induction and the ratio of IFN-γ to IL-10 induced by different probiotic bacteria formulation in the absence of IL-2 treatment remained much lower when compared to those treated in the presence of IL-2. Of note is the difference between NK cells and CD8+ T cells in which synergistic induction of IFN-y by IL-2 + sAJ4 was significantly higher in NK cells than those seen by CD8+ T cells. Based on these results, sAJ3 should be effective in alleviating auto-immunity seen in ALS since it will greatly regulate the levels and function of IFN-γ negatively, decreasing overactivation of cytotoxic immune effectors and prevention of death in motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral , Antineoplásicos , Humanos , Interleucina-10/farmacología , Esclerosis Amiotrófica Lateral/terapia , Leucocitos Mononucleares , Interleucina-2 , Citocinas , Interferón gamma , Antineoplásicos/farmacología , Anticuerpos Monoclonales
17.
Crit Rev Immunol ; 43(1): 27-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522559

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an auto-immune neurodegenerative disorder affecting the motor-neurons. The causes of ALS are heterogeneous, and are only partially understood to date. We studied percentage and function of immune cell subsets in particular natural killer (NK) and CD8+ T cells in an ALS patient and compared the results to those obtained from his genetically identical healthy twin in a longitudinal study. We found several basic mechanisms which were potentially involved in the disease induction and progression. Our findings demonstrate that ALS patient's peripheral blood contained higher NK and B cells and, lower T cell percentages compared with the healthy twin brother's peripheral blood. Significantly increased interferon-gamma secretion by anti-CD3/28 monoclonal antibody-treated peripheral blood mononuclear cells, and sorted CD8+ T cells were observed in the ALS patient, suggesting that hyper-responsiveness of T cell compartment could be a potential mechanism of ALS progression. Significant increase in NK cell function due to genetic mutations in ALS associated genes may partly be responsible for the increase expansion and function of CD8+ T cells with effector/memory phenotype, in addition to direct activation and expansion of antigen specific T cells by such mutations. Weekly N-acetyl cysteine infusion to block cell death in patient in addition to a number of other therapies listed in this paper were not effective, and even though the treatments might have extended the patient's life, it was not curative. Therefore, activated CD8+ T and NK cells are likely cells targeting motor neurons in the patient, and strategies should be designed to decrease the aggressive nature of these cells to achieve longer lasting therapeutic benefits.

18.
Crit Rev Immunol ; 43(1): 1-11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522557

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurological disease characterized by the progressive loss of motor neurons in the brain and spinal cord. No effective therapeutic strategies have been established thus far, and therefore there is a significant unmet need for effective therapeutics to arrest the disease and reverse the pathologies induced by it. Although the cause of ALS is not well-defined, it appears to be heterogenous. Currently over 20 genes have been found to be associated with ALS. Family history can only be found in 10% of ALS patients, but in the remaining 90% no association with family history is found. The most common genetic causes are expansion in the C9orf72 gene and mutations in superoxide dismutase 1, TDP-43, and FUS. In our recent study, we also found mutations in TDP43 and FUS in ALS patients. To understand the pathogenesis of the disease, we set ourselves the task of analyzing the phenotype and function of all key immune effectors in ALS patients, comparing them with either a genetically healthy twin or healthy individuals. Our study demonstrated a significant increase in functional activation of NK and CD8+ T cytotoxic immune effectors and release of significant IFN-γ not only by the effector cells but also in the serum of ALS patients. Longitudinal analysis of CD8+ T cell-mediated IFN-γ secretion from ALS patients demonstrated continued and sustained increase in IFN-γ secretion with periods of decrease which coincided with certain treatments; however, the effects were largely short-lived. N-acetyl cysteine (NAC), one of the treatments used, is known to block cell death; however, even though such treatment was able to block most of the proinflammatory cytokines, chemokines, and growth factor release, it was not able to block IFN-γ and TNF-α, the two cytokines we had demonstrated previously to induce differentiation of the cells. In this review, we discuss the contribution of cytotoxic effector cells, especially primary NK cells, supercharged NK cells (sNK), and the contribution of sNK cells in expansion and functional activation of CD8+ T cells to memory/effector T cells in the pathogenesis of ALS. Potential new targeted therapeutic strategies are also discussed.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/farmacología , Citocinas/metabolismo
19.
Cell Biol Int ; 48(6): 872-882, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480956

RESUMEN

Oxaliplatin (OXA) has shown high effectiveness in the treatment of cancers, but its anticancer clinical effects often induce neurotoxicity leading to neuropathic pain. Oxidative damage and NLRP3 inflammasome play important roles in neuropathic pain development. Here, neuropathic pain mouse model was constructed by continuous intraperitoneal injection of OXA. OXA administration induced mechanical pain, spontaneous pain, thermal hyperalgesia and motor disability in mice. The spinal cord tissues of OXA mice exhibited the suppressed antioxidative response, the activated NLRP3 inflammasome mediated inflammatory responses, and the increased GSK-3ß activity. Next, we injected curcumin (CUR) intraperitoneally in OXA mice for seven consecutive days. CUR-treated mice showed increased mechanical pain thresholds, reduced number of spontaneous flinches, increased paw withdrawal latency, and restored latency to fall. While in the spinal cord, CUR treatment inhibited the NLRP3 inflammasome mediated inflammatory response, increased Nrf2/GPX4-mediated antioxidant responses, and decreased mitochondrial oxidative generation. Additionally, CUR combined with GSK-3ß through four covalent bonds and reduced GSK-3ß activity. In conclusion, our findings suggest that CUR treatment inhibits GSK-3ß activation, increases Nrf2 mediated antioxidant responses, inhibits oxidative damage and inflammatory reaction, and alleviates OXA-induced neuropathic pain.


Asunto(s)
Antioxidantes , Curcumina , Glucógeno Sintasa Quinasa 3 beta , Inflamación , Neuralgia , Oxaliplatino , Animales , Oxaliplatino/efectos adversos , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Ratones , Antioxidantes/farmacología , Masculino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo
20.
Analyst ; 149(7): 2051-2058, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38411001

RESUMEN

A biosensor that can detect biomarkers accurately, quickly, and conveniently is important for the diagnosis of various diseases. However, most of the existing detection methods require sample extraction, which makes it difficult to detect and image intracellular molecules or to detect two different types of biomarkers simultaneously. In this study, we constructed a DNA tetrahedral nanoprobe (DTP) capable of detecting both miR378 and telomerase, both of which are tumor markers. In the presence of miR378, FAM on the molecular beacon of DTP fluoresced via Förster resonance energy transfer (FRET), and the limit of detection was 476 pM with excellent specificity. When present, telomerase binds to telomerase substrate (TS) primers, extending the repeat sequence (TTAGGG)n to trigger Cy3 fluorescence. A strong linear relationship existed between the fluorescence intensity of Cy3 and the number of HeLa cells. The limit of detection was 800 HeLa cells. In addition, DTP was less cytotoxic to and biocompatible with HeLa cells and fluoresced only in cancer cells, which can help to sensitively distinguish between normal and cancer cells. In conclusion, DTP can simultaneously detect the content of miR378 and activity of telomerase and realize intracellular imaging, which has broad application prospects in early cancer diagnosis and treatment.


Asunto(s)
MicroARNs , Telomerasa , Humanos , Células HeLa , Telomerasa/metabolismo , Colorantes Fluorescentes/química , ADN/genética , ADN/química , Imagen Óptica/métodos , Biomarcadores , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA