Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Chem ; 138: 106654, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300959

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Neuroinflammation and oxidative stress are important factors driving the progression of PD. It has been reported that 1,3,4-oxadiazole and flavone derivatives have numerous biological functions, especially in the aspect of anti-inflammatory and antioxidant. Based on the strategy of pharmacodynamic combination, we introduced 1,3,4-oxadiazole moiety into the flavonoid backbone, designed and synthesized a series of novel flavonoid 1,3,4-oxadiazole derivatives. Further, we evaluated their toxicity, anti-inflammatory and antioxidant activities using BV2 microglia. Following a comprehensive analysis, compound F12 showed the best pharmacological activity. In vivo, we induced the classical PD animal model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into C57/BL6J mice. Our results showed that compound F12 ameliorated MPTP-induced dysfunction in mice. Further, compound F12 reduced oxidative stress by promoting the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inflammatory response by inhibiting the nuclear translocation of nuclear factor-κB (NF-κB) in vivo and in vitro. Meanwhile, compound F12 inhibited the mitochondrial apoptotic pathway to rescue microglia inflammation-mediated loss of dopaminergic neurons. In conclusion, compound F12 reduced oxidative stress and inflammation and could be as a potential agent for PD treatment.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Flavonoides/farmacología , Flavonoides/uso terapéutico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Acta Pharmacol Sin ; 44(2): 308-320, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35948752

RESUMEN

Sensitization of central pain and inflammatory pathways play essential roles in migraine, a primary neurobiological headache disorder. Since hypoxia-inducible factor-1α (HIF-1α) is implicated in neuroprotection and inflammation inhibition, herein we investigated the role of HIF-1α in migraine. A chronic migraine model was established in mice by repeated injection of nitroglycerin (10 mg/kg, i.p.) every other day for 5 total injections. In the prevention and acute experiments, roxadustat, a HIF-1α stabilizer, was orally administered starting before or after nitroglycerin injection, respectively. Pressure application measurement, and tail flick and light-aversive behaviour tests were performed to determine the pressure pain threshold, thermal nociceptive sensitivity and migraine-related light sensitivity. At the end of experiments, mouse serum samples and brain tissues were collected for analyses. We showed that roxadustat administration significantly attenuated nitroglycerin-induced basal hypersensitivity and acute hyperalgesia by improving central sensitization. Roxadustat administration also decreased inflammatory cytokine levels in serum and trigeminal nucleus caudalis (TNC) through NF-κB pathway. Consistent with the in vivo results showing that roxadustat inhibited microglia activation, roxadustat (2, 10, and 20 µM) dose-dependently reduced ROS generation and inflammation in LPS-stimulated BV-2 cells, a mouse microglia cell line, by inhibiting HIF-1α/NF-κB pathway. Taken together, this study demonstrates that roxadustat administration ameliorates migraine-like behaviours and inhibits central pain sensitization in nitroglycerin-injected mice, which is mainly mediated by HIF-1α/NF-κB/inflammation pathway, suggesting the potential of HIF-1α activators as therapeutics for migraine.


Asunto(s)
Trastornos Migrañosos , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Nitroglicerina/efectos adversos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Umbral del Dolor , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
3.
Bioorg Med Chem Lett ; 43: 128051, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33887441

RESUMEN

Successes have been achieved in developing human monoamine oxidase B (hMAO-B) inhibitors as anti-Parkinson's disease (PD) drugs. However, low efficiency and unwanted side effects of the marketed hMAO-B inhibitors hamper their medical applications, therefore, novel potent selective hMAO-B inhibitors are still of great interest. Herein we report 1-(prop-2-yn-1-ylamino)-2,3-dihydro-1H-indene-4-thiol derivatives as hMAO-B inhibitors, which were designed by employing a fragment-based drug design strategy to link rasagiline to hydrophobic fragments. Among the synthesized 31 compounds, K8 and K24 demonstrated very encouraging hMAO-B inhibitory activities and selectivity over hMAO-A, better than rasagiline and safinamide. In vitro studies indicated that K8 and K24 are nontoxic to nervous tissue cells and they have considerable effects against ROS formation and potential neuroprotective activity. Further mice behavioral tests demonstrated these two compounds have good therapeutic effects on MPTP-induced PD model mice. All these experiment results suggest that compounds K8 and K24 can be promising candidates for further research for treatment of PD.


Asunto(s)
Diseño de Fármacos , Indenos/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Compuestos de Sulfhidrilo/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Indenos/síntesis química , Indenos/química , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química
4.
Eur J Med Chem ; 258: 115602, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37406380

RESUMEN

Pterostilbene is a demethylated resveratrol derivative with attractive anti-inflammatory, anti-tumor and anti-oxidative stress activities. However, the clinical use of pterostilbene is limited by its poor selectivity and druggability. Heart failure is a leading cause of morbidity and mortality worldwide, which is closely related to enhanced oxidative stress and inflammation. There is an urgent need for new effective therapeutic drugs that can reduce oxidative stress and inflammatory responses. Therefore, we designed and synthesized a series of novel pterostilbene chalcone and dihydropyrazole derivatives with antioxidant and anti-inflammatory activities by the molecular hybridization strategy. The preliminary anti-inflammatory activities and structure-activity relationships of these compounds were evaluated by nitric oxide (NO) inhibitory activity in lipopolysaccharide (LPS)-treated RAW264.7 cells, and compound E1 exhibited the most potent anti-inflammatory activities. Furthermore, pretreatment with compound E1 decreased reactive oxygen species (ROS) generation both in RAW264.7 and H9C2 cells by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as downstream antioxidant enzymes superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase 1 (GPX1). In addition, compound E1 also significantly inhibited LPS or doxorubicin (DOX)-induced inflammation in both RAW264.7 and H9C2 cells through reducing the expression of inflammatory cytokines by inhibiting nuclear factor-κB (NF-κB) signaling pathway. Moreover, we found that compound E1 improved DOX-induced heart failure by inhibiting inflammation and oxidative stress in mouse model, which is mediated by the potential of antioxidant and anti-inflammatory activities. In conclusion, this study demonstrated the novel pterostilbene dihydropyrazole derivative E1 was identified as a promising agent for heart failure treatment.


Asunto(s)
Insuficiencia Cardíaca , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Antioxidantes/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Transducción de Señal , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés Oxidativo , Antiinflamatorios/efectos adversos , Insuficiencia Cardíaca/tratamiento farmacológico , Doxorrubicina/farmacología
5.
Eur J Med Chem ; 255: 115417, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37137246

RESUMEN

Inflammation is one of a major feature of Parkinson's disease (PD) which poses a threat to people's health in the world. It has been reported that antioxidation and anti-inflammation have significant effects on the treatment of PD. 1,2,4-oxadiazole and flavone derivatives have remarkable antioxidant and anti-inflammatory activities. In order to find highly effective drugs for PD treatment, based on the remarkable anti-inflammatory and antioxidant activities of the 1,2,4-oxadiazole pharmacophore and the flavonoid pharmacophore, we designed and synthesized a novel series of 3-methyl-8-(3-methyl-1,2,4-oxadiazol-5-yl)-2-phenyl-4H-chromen-4-one derivatives by pharmacophore combination, and evaluated their anti-inflammatory and antioxidation activities for PD treatment. Preliminary structure-activity relationship (SAR) analysis was conducted by their inhibitory activities against reactive oxygen species (ROS) and NO release in LPS-induced BV2 Microglia cells, and the optimal compound Flo8 exhibited the most potent anti-inflammatory and antioxidant activities. Both in vivo and in vitro results showed that Flo8 inhibited neuronal apoptosis by inhibiting inflammatory and apoptotic signaling pathways. In vivo studies also showed that the compound Flo8 ameliorated motor and behavioral deficits and increased serum dopamine levels in MPTP-induced PD model mice. Taken together, this study demonstrated the compound Flo8 could be a promising agent for the treatment of PD.


Asunto(s)
Flavonas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Antioxidantes/farmacología , Oxadiazoles/farmacología , Oxadiazoles/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Relación Estructura-Actividad , Flavonas/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Microglía
6.
Signal Transduct Target Ther ; 7(1): 265, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918332

RESUMEN

Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Colesterol , Células Espumosas/metabolismo , Células Espumosas/patología , Homeostasis , Humanos
7.
ACS Appl Mater Interfaces ; 14(22): 25126-25134, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608168

RESUMEN

Liposomal spherical nucleic acids possess a high density of nucleic acids, e.g., DNA, on a liposomal core. There are two approaches to conjugate DNA onto the zwitterionic liposomes, i.e., covalent and noncovalent conjugation, otherwise using cationic liposomes. However, complex and expensive DNA chemical modification methods need to seek a novel and easy-operating approach to decorating DNA onto liposomes. Inspired by the nanoparticle solution as nanoglues for gels and biological tissues, we use MnO2 nanosheets to "glue" DNA onto liposomes without DNA modification. In tumor cells with a high glutathione concentration, MnO2-based nanoglues are degraded, generating water-soluble Mn2+ ions, further "unglue" DNA (i.e., DNAzyme), and liposomes. Using the intelligent liposomal nanoglue (DNAzyme/MnO2/Lip) combining glutathione-sensitive MnO2 nanosheets, gene silencing agent DNAzyme, and photosensitizer Chlorin e6 (Ce6) in liposomes, effective photo-gene therapy was demonstrated.


Asunto(s)
Clorofilidas , ADN Catalítico , ADN , Terapia Genética , Glutatión/metabolismo , Liposomas , Compuestos de Manganeso/farmacología , Óxidos
8.
Food Funct ; 13(18): 9576-9588, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36000402

RESUMEN

Heart failure (HF) is a clinical syndrome characterized by typical symptoms that usually occur at the end stage of various heart diseases and lead to death. Daidzein (DAI), an isoflavone found in soy foods, is widely used to treat menopausal syndrome, prostate cancer, breast cancer, heart disease, cardiovascular disease, and osteoporosis, and has anti-oxidant and anti-inflammatory properties. However, the effects of DAI in HF remain unknown. In this study, doxorubicin (DOX) was used to establish HF models of C57BL/6J mice and H9c2 cells with DAI treatment. Our results showed that DAI markedly improved the DOX-induced decline in cardiac function, and decreased the left ventricular ejection fraction, cardiac inflammation, oxidative stress, apoptosis, and fibrosis. Mechanistically, DAI affects cardiac energy metabolism by regulating SIRT3, and meets the ATP demand of the heart by improving glucose, lipid, and ketone body metabolism as well as restoring mitochondrial dysfunction in vivo and in vitro. Additionally, DAI can exert an antioxidant function and alleviate HF through the SIRT3/FOXO3a pathway. In conclusion, we demonstrate that DAI alleviates DOX-induced cardiotoxicity by regulating cardiac energy metabolism as well as reducing inflammation, oxidative stress, apoptosis and fibrosis, indicating its potential application for HF treatment.


Asunto(s)
Insuficiencia Cardíaca , Isoflavonas , Sirtuina 3 , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/farmacología , Apoptosis , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Fibrosis , Glucosa/metabolismo , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/tratamiento farmacológico , Inflamación/metabolismo , Isoflavonas/metabolismo , Isoflavonas/farmacología , Cetonas , Lípidos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos , Estrés Oxidativo , Transducción de Señal , Sirtuina 3/genética , Sirtuina 3/metabolismo , Volumen Sistólico , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA