Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Angew Chem Int Ed Engl ; 63(13): e202318863, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38271265

RESUMEN

The grooves of DNA provide recognition sites for many nucleic acid binding proteins and anticancer drugs such as the covalently binding cisplatin. Here we report a crystal structure showing, for the first time, groove selectivity by an intercalating ruthenium complex. The complex Λ-[Ru(phen)2 phi]2+ , where phi=9,10-phenanthrenediimine, is bound to the DNA decamer duplex d(CCGGTACCGG)2 . The structure shows that the metal complex is symmetrically bound in the major groove at the central TA/TA step, and asymmetrically bound in the minor groove at the adjacent GG/CC steps. A third type of binding links the strands, in which each terminal cytosine base stacks with one phen ligand. The overall binding stoichiometry is four Ru complexes per duplex. Complementary biophysical measurements confirm the binding preference for the Λ-enantiomer and show a high affinity for TA/TA steps and, more generally, TA-rich sequences. A striking enantiospecific elevation of melting temperatures is found for oligonucleotides which include the TATA box sequence.


Asunto(s)
Complejos de Coordinación , Compuestos Organometálicos , Rutenio , Compuestos Organometálicos/química , ADN/química , Oligonucleótidos/química , Complejos de Coordinación/química , Temperatura , Rutenio/química
2.
J Biol Inorg Chem ; 27(1): 201-213, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35006347

RESUMEN

Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)2]ClO4 (Ag-phendione) and [Cu(1,10-phenanthroline-5,6-dione)3](ClO4)2.4H2O (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (- 7.9 kcal/mol) or minor (- 7.2 kcal/mol) DNA grooves. In vitro competitive quenching assays involving duplex DNA with Hoechst 33258 or ethidium bromide demonstrated that Ag-phendione and Cu-phendione preferentially bind DNA in the minor grooves. The competitive ethidium bromide displacement technique revealed Cu-phendione has a higher binding affinity to DNA (Kapp = 2.55 × 106 M-1) than Ag-phendione (Kapp = 2.79 × 105 M-1) and phendione (Kapp = 1.33 × 105 M-1). Cu-phendione induced topoisomerase I-mediated DNA relaxation of supercoiled plasmid DNA. Moreover, Cu-phendione was able to induce oxidative DNA injuries with the addition of free radical scavengers inhibiting DNA damage. Ag-phendione and Cu-phendione avidly displaced propidium iodide bound to DNA in permeabilized Pseudomonas aeruginosa cells in a dose-dependent manner as judged by flow cytometry. The treatment of P. aeruginosa with bactericidal concentrations of Cu-phendione (15 µM) induced DNA fragmentation as visualized by either agarose gel or TUNEL assays. Altogether, these results highlight a possible novel DNA-targeted mechanism by which phendione-containing complexes, in part, elicit toxicity toward the multidrug-resistant pathogen P. aeruginosa.


Asunto(s)
Complejos de Coordinación , Pseudomonas aeruginosa , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Cobre/farmacología , ADN/química , Simulación del Acoplamiento Molecular , Fenantrolinas/química , Fenantrolinas/farmacología , Plata/farmacología
3.
Chemistry ; 27(3): 971-983, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-32519773

RESUMEN

We report a series of copper(II) artificial metallo-nucleases (AMNs) and demonstrate their DNA damaging properties and in-vitro cytotoxicity against human-derived pancreatic cancer cells. The compounds combine a tris-chelating polypyridyl ligand, di-(2-pycolyl)amine (DPA), and a DNA intercalating phenanthrene unit. Their general formula is Cu-DPA-N,N' (where N,N'=1,10-phenanthroline (Phen), dipyridoquinoxaline (DPQ) or dipyridophenazine (DPPZ)). Characterisation was achieved by X-ray crystallography and continuous-wave EPR (cw-EPR), hyperfine sublevel correlation (HYSCORE) and Davies electron-nuclear double resonance (ENDOR) spectroscopies. The presence of the DPA ligand enhances solution stability and facilitates enhanced DNA recognition with apparent binding constants (Kapp ) rising from 105 to 107 m-1 with increasing extent of planar phenanthrene. Cu-DPA-DPPZ, the complex with greatest DNA binding and intercalation effects, recognises the minor groove of guanine-cytosine (G-C) rich sequences. Oxidative DNA damage also occurs in the minor groove and can be inhibited by superoxide and hydroxyl radical trapping agents. The complexes, particularly Cu-DPA-DPPZ, display promising anticancer activity against human pancreatic tumour cells with in-vitro results surpassing the clinical platinum(II) drug oxaliplatin.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , ADN/análisis , ADN/química , Fenantrenos/química , Fenantrenos/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Daño del ADN/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Neoplasias Pancreáticas/genética , Fenantrolinas/química
4.
Can J Physiol Pharmacol ; 98(3): 131-138, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31545905

RESUMEN

Breast cancer is a worldwide commonly found malignancy in women and effective treatment is regarded as a huge clinical challenge even in the presence of several treatment options. Extensive literature is available demonstrating polyphenols as phytopharmaceutical anticancer agents. Among the polyphenols, quercetin and curcumin have been reported to have a strong potential against breast cancer. However, so far, no comprehensive study has been performed to demonstrate the anticarcinogenic effects of curcumin, quercetin, and their combinations with somatostatin on the fatty acid profile of breast cancer cell membranes. We used MCF-7 and MDA-MB231 breast cancer cells incubated with curcumin and quercetin for 24 h, in the absence and presence of somatostatin, at their EC50 concentrations to evaluate membrane fatty acid based functional lipidomics together with the followup of EGFR and MAPK signaling pathways. The two cell lines gave different membrane free fatty acid reorganization. In MCF-7 cells, the following changes were observed: an increase of ω6 linoleic acid in the cells incubated with somatostatin + quercetin and quercetin and a decrease of ω3 acids in the cells incubated with somatostatin + curcumin compared to somatostatin and significant increases of monounsaturated fatty acid (MUFA), mono-trans arachidonic acid levels and docosapentaenoic acid for the cells incubated with somatostatin + quercetin compared to the control cells. In MDA-MB231 cells, incubations with curcumin, quercetin, and somatostatin + quercetin induced the most significant membrane remodeling with the increase of stearic acid, diminution of ω6 linoleic, arachidonic acids, and ω3 (docosapentaenoic and docosahexaenoic acids). Distinct signaling pathway changes were found for these cell lines. In MCF-7 cells, separate or combined incubations with somatostatin and quercetin, significantly decreased EGFR and incubation with curcumin decreased MAPK signaling. In MDA-MB231 cells, incubation with curcumin decreased AKT1 and p-AKT1 (Thr308) levels. Incubation with curcumin and quercetin decreased the EGFR levels. Our results showed that cytostatic and antioxidant treatments can be combined to induce membrane fatty acid changes, including lipid isomerization as specific free radical driven process, and to influence signaling pathways. This study aimed to contribute to the literature on these antioxidants in the treatment of breast cancer to clarify the effects and mechanisms in combination with somatostatin.


Asunto(s)
Neoplasias de la Mama/metabolismo , Membrana Celular/metabolismo , Curcumina/farmacología , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Quercetina/farmacología , Somatostatina/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Membrana Celular/efectos de los fármacos , Femenino , Hormonas/farmacología , Humanos , Células Tumorales Cultivadas
5.
Chemistry ; 25(1): 221-237, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30221802

RESUMEN

The building of robust and versatile inorganic scaffolds with artificial metallo-nuclease (AMN) activity is an important goal for bioinorganic, biotechnology, and metallodrug research fields. Here, a new type of AMN combining a tris-(2-pyridylmethyl)amine (TPMA) scaffold with the copper(II) N,N'-phenanthrene chemical nuclease core is reported. In designing these complexes, the stabilization and flexibility of TPMA together with the prominent chemical nuclease activity of copper 1,10-phenanthroline (Phen) were targeted. A second aspect was the opportunity to introduce designer phenazine DNA intercalators (e.g., dipyridophenazine; DPPZ) for improved DNA recognition. Five compounds of formula [Cu(TPMA)(N,N')]2+ (where N,N' is 2,2-bipyridine (Bipy), Phen, 1,10-phenanthroline-5,6-dione (PD), dipyridoquinoxaline (DPQ), or dipyridophenazine (DPPZ)) were developed and characterized by X-ray crystallography. Solution stabilities were studied by continuous-wave EPR (cw-EPR), hyperfine sublevel correlation (HYSCORE), and Davies electron-nuclear double resonance (ENDOR) spectroscopies, which demonstrated preferred geometries in which phenanthrene ligands were coordinated to the copper(II) TPMA core. Complexes with Phen, DPQ, and DPPZ ligands possessed enhanced DNA binding activity, with DPQ and DPPZ compounds showing excellent intercalative effects. These complexes are effective AMNs and analysis with spin-trapping scavengers of reactive oxygen species and DNA repair enzymes with glycosylase/endonuclease activity demonstrated a distinctive DNA oxidation activity compared to classical Sigman- and Fenton-type reagents.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Fenantrenos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Endonucleasas/química , Endonucleasas/metabolismo , Espectroscopía de Resonancia Magnética , Conformación Molecular
6.
Molecules ; 24(17)2019 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-31450691

RESUMEN

The natural peptide somatostatin has hormonal and cytostatic effects exerted by the binding to specific receptors in various tissues. Therapeutic uses are strongly prevented by its very short biological half-life of 1-2 min due to enzymatic hydrolysis, therefore encapsulation methodologies are explored to overcome the need for continuous infusion regimes. Multilamellar liposomes made of natural phosphatidylcholine were used for the incorporation of a mixture of somatostatin and sorbitol dissolved in citrate buffer at pH = 5. Lyophilization and reconstitution of the suspension were carried out, showing the flexibility of this preparation. Full characterization of this suspension was obtained as particle size, encapsulation efficiency and retarded release properties in aqueous medium and human plasma. Liposomal somatostatin incubated at 37 °C in the presence of Fe(II) and (III) salts were used as a biomimetic model of drug-cell membrane interaction, evidencing the free radical processes of peroxidation and isomerization that transform the unsaturated fatty acid moieties of the lipid vesicles. This study offers new insights into a liposomal delivery system and highlights molecular reactivity of sulfur-containing drugs with its carrier or biological membranes for pharmacological applications.


Asunto(s)
Liposomas/química , Somatostatina/química , Somatostatina/farmacología , Tampones (Química) , Cromatografía Liquida , Preparaciones de Acción Retardada , Liberación de Fármacos , Radicales Libres/química , Humanos , Lípidos/química , Espectrometría de Masas , Estructura Molecular , Somatostatina/farmacocinética
7.
Chem Res Toxicol ; 31(3): 191-200, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29485870

RESUMEN

Docosahexaenoic acid (DHA) is a semiessential polyunsaturated fatty acid (PUFA) for eukaryotic cells that is found in natural sources such as fish and algal oils and widely used as an ingredient for omega-3 containing foods or supplements. DHA effects are connected to its natural structure with six cis double bonds, but geometrical monotrans isomers can be formed during distillation or deodorization processes, as an unwanted event that alters molecular characteristics and annihilates health benefits. The characterization of the six monotrans DHA regioisomers is an open issue to address for analytical, biological, and nutraceutical applications. Here we report the preparation, separation, and first identification of each isomer by a dual approach consisting of the following: (i) the direct thiyl radical-catalyzed isomerization of cis-DHA methyl ester and (ii) the two-step synthesis from cis-DHA methyl ester via monoepoxides as intermediates, which are separated and identified by nuclear magnetic resonance spectroscopy, followed by elimination for the unequivocal assignment of the double bond position. This monotrans DHA isomer library with NMR and GC analytical characterization was also used to examine the products of thiyl-radical-catalyzed isomerization of a fish oil sample and to evaluate the trans isomer content in omega-3 containing supplements commercially available in Italy and Spain.


Asunto(s)
Suplementos Dietéticos/análisis , Ácidos Docosahexaenoicos/análisis , Aceites de Pescado/análisis , Técnicas de Química Sintética , Ácidos Docosahexaenoicos/síntesis química , Compuestos Epoxi/síntesis química , Isomerismo , Espectroscopía de Resonancia Magnética , Fotólisis , Control de Calidad
8.
Anticancer Agents Med Chem ; 19(15): 1899-1909, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31566138

RESUMEN

BACKGROUND: Vitamin C (Vit C) is an important physiological antioxidant with growing applications in cancer. Somatostatin (SST) is a natural peptide with growth inhibitory effect in several mammary cancer models. OBJECTIVE: The combined effects of SST and Vit C supplementation have never been studied in breast cancer cells so far. METHODS: We used MCF-7 and MDA-MB231 breast cancer cells incubated with SST for 24h, in the absence and presence of Vit C, at their EC50 concentrations, to evaluate membrane fatty acid-profiles together with the follow-up of EGFR and MAPK signaling pathways. RESULTS: The two cell lines gave different membrane reorganization: in MCF-7 cells, decrease of omega-6 linoleic acid and increase of omega-3 fatty acids (Fas) occurred after SST and SST+Vit C incubations, the latter also showing significant increases in MUFA, docosapentaenoic acid and mono-trans arachidonic acid levels. In MDA-MB231 cells, SST+Vit C incubation induced significant membrane remodeling with an increase of stearic acid and mono-trans-linoleic acid isomer, diminution of omega-6 linoleic, arachidonic acid and omega-3 (docosapentaenoic and docosadienoic acids). Distinct signaling pathways in these cell lines were studied: in MCF-7 cells, incubations with SST and Vit C, alone or in combination significantly decreased EGFR and MAPK signaling, whereas in MDA-MB231 cells, SST and Vit C incubations, alone or combined, decreased p- P44/42 MAPK levels, and increased EGFR levels. CONCLUSION: Our results showed that SST and Vit C can be combined to induce membrane fatty acid changes, including lipid isomerization through a specific free radical-driven process, influencing signaling pathways.


Asunto(s)
Ácido Ascórbico/metabolismo , Neoplasias de la Mama/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Somatostatina/metabolismo , Ácidos Araquidónicos/metabolismo , Extractos Celulares/química , Línea Celular Tumoral , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lípidos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfolípidos/química , Transducción de Señal , Ácidos Esteáricos/metabolismo
9.
ACS Omega ; 3(11): 15952-15965, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30556020

RESUMEN

The use of copper complexes for redox and oxidative-based mechanisms in therapeutic strategies is an important field of multidisciplinary research. Here, a novel Cu(II) complex [Cu(TPMA)(Phen)](ClO4)2 (Cu-TPMA-Phen, where TPMA = tris-(2-pyridylmethyl)amine and Phen = 1,10-phenanthroline) was studied using both the free and encapsulated forms. A hollow pH-sensitive drug-delivery system was synthesized, characterized, and used to encapsulate and release the copper complex, thus allowing for the comparison with the free drug. The human neuroblastoma-derived cell line NB100 was treated with 5 µM Cu-PMA-Phen for 24 h, pointing to the consequences on mono- and polyunsaturated fatty acids (MUFA and PUFA) present in the membrane lipidome, coupled with cell viability and death pathways (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium viability assay, flow cytometry, microscopy, caspase activation). In parallel, the Cu-TPMA-Phen reactivity with the fatty acid moieties of phospholipids was studied using the liposome model to work in a biomimetic environment. The main results concerned: (i) the membrane lipidome in treated cells, involving remodeling with a specific increase of saturated fatty acids (SFAs) and a decrease of MUFA, but not PUFA; (ii) cytotoxic events and lipidome changes did not occur for the encapsulated Cu-TPMA-Phen, showing the influence of such nanocarriers on drug activity; and (iii) the liposome behavior confirmed that MUFA and PUFA fatty acid moieties in membranes are not affected by oxidative and isomerization reactions, proving the different reactivities of thiyl radicals generated from amphiphilic and hydrophilic thiols and Cu-TPMA-Phen. This study gives preliminary but important elements of copper(II) complex reactivity in cellular and biomimetic models, pointing mainly to the effects on membrane reactivity and remodeling based on the balance between SFA and MUFA in cell membranes that are subjects of strong interest for chemotherapeutic activities as well as connected to nutritional strategies.

10.
Diagnostics (Basel) ; 7(1)2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-28025506

RESUMEN

Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress-with an excess of radical and oxidative processes-cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA