Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34443616

RESUMEN

Water pollution by various toxic substances remains a serious environmental problem, especially the occurrence of organic micropollutants including endocrine disruptors, pharmaceutical pollutants and naphthol pollutants. Adsorption process has been an effective method for pollutant removal in wastewater treatment. However, the thermal regeneration process for the most widely used activated carbon is costly and energy-consuming. Therefore, there has been an increasing need to develop alternative low-cost and effective adsorption materials for pollutant removal. Herein, ß-cyclodextrin (ß-CD), a cheap and versatile material, was modified with methacrylate groups by reacting with methacryloyl chloride, giving an average degree of substitution of 3 per ß-CD molecule. ß-CD-methacrylate, which could function as a crosslinker, was then copolymerized with acrylamide monomer via free-radical copolymerization to form ß-CD-polyacrylamide (ß-CD-PAAm) hydrogel. Interestingly, in the structure of the ß-CD-PAAm hydrogel, ß-CD is not only a functional unit binding pollutant molecules through inclusion complexation, but also a structural unit crosslinking PAAm leading to the formation of the hydrogel 3D networks. Morphological studies showed that ß-CD-PAAm gel had larger pore size than the control PAAm gel, which was synthesized using conventional crosslinker instead of ß-CD-methacrylate. This was consistent with the higher swelling ratio of ß-CD-PAAm gel than that of PAAm gel (29.4 vs. 12.7). In the kinetic adsorption studies, phenolphthalein, a model dye, and bisphenol A, propranolol hydrochloride, and 2-naphthol were used as model pollutants from different classes. The adsorption data for ß-CD-PAAm gel fitted well into the pseudo-second-order model. In addition, the thermodynamic studies revealed that ß-CD-PAAm gel was able to effectively adsorb the different dye and pollutants at various concentrations, while the control PAAm gel had very low adsorption, confirming that the pollutant removal was due to the inclusion complexation between ß-CD units and pollutant molecules. The adsorption isotherms of the different dye and pollutants by the ß-CD-PAAm gel fitted well into the Langmuir model. Furthermore, the ß-CD-PAAm gel could be easily recycled by soaking in methanol and reused without compromising its performance for five consecutive adsorption/desorption cycles. Therefore, the ß-CD-PAAm gel, which combines the advantage of an easy-to-handle hydrogel platform and the effectiveness of adsorption by ß-CD units, could be a promising pollutant removal system for wastewater treatment applications.

2.
Chem Commun (Camb) ; 58(5): 681-684, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34919108

RESUMEN

A hydrogel scaffold with a non-fouling but specific cancer cell-adhesive surface was fabricated through surface modification using ß-cyclodextrin-based host-guest chemistry. Interestingly, the hydrogel surface not only selectively captured specific cancer cells, but also grew the cells into multicellular spheroids. The spheroids could be released without damaging the cell viability through replacing the host moieties on the scaffold, and the released spheroids showed no changes in size or morphology.


Asunto(s)
Esferoides Celulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA