Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell ; 185(2): 328-344.e26, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063074

RESUMEN

Locomotion is a complex behavior required for animal survival. Vertebrate locomotion depends on spinal interneurons termed the central pattern generator (CPG), which generates activity responsible for the alternation of flexor and extensor muscles and the left and right side of the body. It is unknown whether multiple or a single neuronal type is responsible for the control of mammalian locomotion. Here, we show that ventral spinocerebellar tract neurons (VSCTs) drive generation and maintenance of locomotor behavior in neonatal and adult mice. Using mouse genetics, physiological, anatomical, and behavioral assays, we demonstrate that VSCTs exhibit rhythmogenic properties and neuronal circuit connectivity consistent with their essential role in the locomotor CPG. Importantly, optogenetic activation and chemogenetic silencing reveals that VSCTs are necessary and sufficient for locomotion. These findings identify VSCTs as critical components for mammalian locomotion and provide a paradigm shift in our understanding of neural control of complex behaviors.


Asunto(s)
Locomoción/fisiología , Mamíferos/fisiología , Neuronas Motoras/citología , Tractos Espinocerebelares/citología , Animales , Axones/fisiología , Fenómenos Electrofisiológicos , Uniones Comunicantes/metabolismo , Silenciador del Gen , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Vértebras Lumbares/metabolismo , Ratones , Propiocepción , Natación , Sinapsis/fisiología , Factores de Transcripción/metabolismo
2.
Cell ; 165(1): 207-219, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26949184

RESUMEN

Animals generate movement by engaging spinal circuits that direct precise sequences of muscle contraction, but the identity and organizational logic of local interneurons that lie at the core of these circuits remain unresolved. Here, we show that V1 interneurons, a major inhibitory population that controls motor output, fractionate into highly diverse subsets on the basis of the expression of 19 transcription factors. Transcriptionally defined V1 subsets exhibit distinct physiological signatures and highly structured spatial distributions with mediolateral and dorsoventral positional biases. These positional distinctions constrain patterns of input from sensory and motor neurons and, as such, suggest that interneuron position is a determinant of microcircuit organization. Moreover, V1 diversity indicates that different inhibitory microcircuits exist for motor pools controlling hip, ankle, and foot muscles, revealing a variable circuit architecture for interneurons that control limb movement.


Asunto(s)
Extremidades/fisiología , Movimiento , Células de Renshaw/química , Células de Renshaw/citología , Médula Espinal/citología , Factores de Transcripción/análisis , Animales , Ratones , Propiocepción , Células de Renshaw/clasificación , Células de Renshaw/fisiología , Transcriptoma
3.
Cell ; 151(2): 440-54, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063131

RESUMEN

Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de la Membrana/metabolismo , Atrofia Muscular Espinal/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Humanos , Proteínas de la Membrana/genética , Ratones , Células 3T3 NIH , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Genes Dev ; 32(15-16): 1045-1059, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30012555

RESUMEN

Ubiquitous deficiency in the survival motor neuron (SMN) protein causes death of motor neurons-a hallmark of the neurodegenerative disease spinal muscular atrophy (SMA)-through poorly understood mechanisms. Here, we show that the function of SMN in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) regulates alternative splicing of Mdm2 and Mdm4, two nonredundant repressors of p53. Decreased inclusion of critical Mdm2 and Mdm4 exons is most prominent in SMA motor neurons and correlates with both snRNP reduction and p53 activation in vivo. Importantly, increased skipping of Mdm2 and Mdm4 exons regulated by SMN is necessary and sufficient to synergistically elicit robust p53 activation in wild-type mice. Conversely, restoration of full-length Mdm2 and Mdm4 suppresses p53 induction and motor neuron degeneration in SMA mice. These findings reveal that loss of SMN-dependent regulation of Mdm2 and Mdm4 alternative splicing underlies p53-mediated death of motor neurons in SMA, establishing a causal link between snRNP dysfunction and neurodegeneration.


Asunto(s)
Empalme Alternativo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas/genética , Animales , Muerte Celular , Exones , Ratones , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatología , Células 3T3 NIH , Degeneración Nerviosa/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Proteína p53 Supresora de Tumor/metabolismo
5.
Brain ; 146(11): 4574-4593, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37678880

RESUMEN

Neuromodulation by serotonin regulates the activity of neuronal networks responsible for a wide variety of essential behaviours. Serotonin (or 5-HT) typically activates metabotropic G protein-coupled receptors, which in turn initiate second messenger signalling cascades and induce short and long-lasting behavioural effects. Serotonin is intricately involved in the production of locomotor activity and gait control for different motor behaviours. Although dysfunction of serotonergic neurotransmission has been associated with mood disorders and spasticity after spinal cord injury, whether and to what extent such dysregulation is implicated in movement disorders has not been firmly established. Here, we investigated whether serotonergic neuromodulation is affected in spinal muscular atrophy (SMA), a neurodegenerative disease caused by ubiquitous deficiency of the SMN protein. The hallmarks of SMA are death of spinal motor neurons, muscle atrophy and impaired motor control, both in human patients and mouse models of disease. We used a severe mouse model of SMA, that closely recapitulates the severe symptoms exhibited by type I SMA patients, the most common and most severe form of the disease. Together, with mouse genetics, optogenetics, physiology, morphology and behavioural analysis, we report severe dysfunction of serotonergic neurotransmission in the spinal cord of SMA mice, both at early and late stages of the disease. This dysfunction is followed by reduction of 5-HT synapses on vulnerable motor neurons. We demonstrate that motor neurons innervating axial and trunk musculature are preferentially affected, suggesting a possible cause for the proximo-distal progression of disease, and raising the possibility that it may underlie scoliosis in SMA patients. We also demonstrate that the 5-HT dysfunction is caused by SMN deficiency in serotonergic neurons in the raphe nuclei of the brainstem. The behavioural significance of the dysfunction in serotonergic neuromodulation is underlined by inter-limb discoordination in SMA mice, which is ameliorated when selective restoration of SMN in 5-HT neurons is achieved by genetic means. Our study uncovers an unexpected dysfunction of serotonergic neuromodulation in SMA and indicates that, if normal function is to be restored under disease conditions, 5-HT neuromodulation should be a key target for therapeutic approaches.


Asunto(s)
Atrofia Muscular Espinal , Enfermedades Neurodegenerativas , Humanos , Ratones , Animales , Serotonina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Atrofia Muscular Espinal/genética , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Modelos Animales de Enfermedad
6.
Genes Dev ; 30(9): 1058-69, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27151977

RESUMEN

Motor axons approach muscles that are prepatterned in the prospective synaptic region. In mice, prepatterning of acetylcholine receptors requires Lrp4, a LDLR family member, and MuSK, a receptor tyrosine kinase. Lrp4 can bind and stimulate MuSK, strongly suggesting that association between Lrp4 and MuSK, independent of additional ligands, initiates prepatterning in mice. In zebrafish, Wnts, which bind the Frizzled (Fz)-like domain in MuSK, are required for prepatterning, suggesting that Wnts may contribute to prepatterning and neuromuscular development in mammals. We show that prepatterning in mice requires Lrp4 but not the MuSK Fz-like domain. In contrast, prepatterning in zebrafish requires the MuSK Fz-like domain but not Lrp4. Despite these differences, neuromuscular synapse formation in zebrafish and mice share similar mechanisms, requiring Lrp4, MuSK, and neuronal Agrin but not the MuSK Fz-like domain or Wnt production from muscle. Our findings demonstrate that evolutionary divergent mechanisms establish muscle prepatterning in zebrafish and mice.


Asunto(s)
Evolución Biológica , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/embriología , Unión Neuromuscular/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de Homeodominio , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas Tirosina Quinasas Receptoras/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
J Neurosci ; 41(2): 376-389, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33219005

RESUMEN

Dysfunction of neuronal circuits is an important determinant of neurodegenerative diseases. Synaptic dysfunction, death, and intrinsic activity of neurons are thought to contribute to the demise of normal behavior in the disease state. However, the interplay between these major pathogenic events during disease progression is poorly understood. Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by a deficiency in the ubiquitously expressed protein SMN and is characterized by motor neuron death, skeletal muscle atrophy, as well as dysfunction and loss of both central and peripheral excitatory synapses. These disease hallmarks result in an overall reduction of neuronal activity in the spinal sensory-motor circuit. Here, we show that increasing neuronal activity by chronic treatment with the FDA-approved potassium channel blocker 4-aminopyridine (4-AP) improves motor behavior in both sexes of a severe mouse model of SMA. 4-AP restores neurotransmission and number of proprioceptive synapses and neuromuscular junctions (NMJs), while having no effects on motor neuron death. In addition, 4-AP treatment with pharmacological inhibition of p53-dependent motor neuron death results in additive effects, leading to full correction of sensory-motor circuit pathology and enhanced phenotypic benefit in SMA mice. Our in vivo study reveals that 4-AP-induced increase of neuronal activity restores synaptic connectivity and function in the sensory-motor circuit to improve the SMA motor phenotype.SIGNIFICANCE STATEMENT Spinal muscular atrophy (SMA) is a neurodegenerative disease, characterized by synaptic loss, motor neuron death, and reduced neuronal activity in spinal sensory-motor circuits. However, whether these are parallel or dependent events is unclear. We show here that long-term increase of neuronal activity by the FDA-approved drug 4-aminopyridine (4-AP) rescues the number and function of central and peripheral synapses in a SMA mouse model, resulting in an improvement of the sensory-motor circuit and motor behavior. Combinatorial treatment of pharmacological inhibition of p53, which is responsible for motor neuron death and 4-AP, results in additive beneficial effects on the sensory-motor circuit in SMA. Thus, neuronal activity restores synaptic connections and improves significantly the severe SMA phenotype.


Asunto(s)
Trastornos del Movimiento/tratamiento farmacológico , Atrofia Muscular Espinal/tratamiento farmacológico , Desempeño Psicomotor/efectos de los fármacos , Trastornos de la Sensación/tratamiento farmacológico , 4-Aminopiridina/uso terapéutico , Animales , Muerte Celular/efectos de los fármacos , Ratones , Ratones Noqueados , Neuronas Motoras/efectos de los fármacos , Trastornos del Movimiento/etiología , Trastornos del Movimiento/psicología , Atrofia Muscular Espinal/complicaciones , Atrofia Muscular Espinal/psicología , Unión Neuromuscular/efectos de los fármacos , Bloqueadores de los Canales de Potasio/uso terapéutico , Propiocepción/efectos de los fármacos , Trastornos de la Sensación/etiología , Trastornos de la Sensación/psicología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Proteína p53 Supresora de Tumor/antagonistas & inhibidores
8.
J Neurosci ; 35(7): 3073-84, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25698744

RESUMEN

Mechanoreception is an essential feature of many sensory modalities. Nevertheless, the mechanisms that govern the conversion of a mechanical force to distinct patterns of action potentials remain poorly understood. Proprioceptive mechanoreceptors reside in skeletal muscle and inform the nervous system of the position of body and limbs in space. We show here that Whirlin/Deafness autosomal recessive 31 (DFNB31), a PDZ-scaffold protein involved in vestibular and auditory hair cell transduction, is also expressed by proprioceptive sensory neurons (pSNs) in dorsal root ganglia in mice. Whirlin localizes to the peripheral sensory endings of pSNs and facilitates pSN afferent firing in response to muscle stretch. The requirement of Whirlin in both proprioceptors and hair cells suggests that accessory mechanosensory signaling molecules define common features of mechanoreceptive processing across sensory systems.


Asunto(s)
Proteínas de la Membrana/metabolismo , Husos Musculares/fisiología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Ganglios Espinales/citología , Perfilación de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/genética , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Músculo Esquelético/citología , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Parvalbúminas/genética , Parvalbúminas/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Aglutininas del Germen de Trigo/genética , Aglutininas del Germen de Trigo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Adv Neurobiol ; 28: 63-85, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36066821

RESUMEN

This chapter will provide an introduction into motoneuron anatomy, electrophysiological properties, firing patterns focusing on development and also describing several pathological conditions that affect mononeurons. It starts with a historical retrospective describing the early landmark work into motoneurons. The next section lays out the various types of motoneurons (alpha, beta, and gamma) and their subclasses (fast-twitch fatigable, fast-twitch fatigue-resistant, and slow-twitch fatigue resistant), highlighting the functional relevance of this classification scheme. The third section describes the development of motoneurons' passive and active electrophysiological properties. This section also defines the major terms one uses in describing how a neuron functions electrophysiologically. The electrophysiological aspects of a neuron is critical to understanding how it behaves within a circuit and contributes to behavior since the firing of an action potential is how neurons communicate with each other and with muscles. The electrophysiological changes of motoneurons over development underlies how their function changes over the lifetime of an organism. After describing the properties of individual motoneurons, the chapter then turns to revealing how motoneurons interact within complex neural circuits, with other motoneurons as well as sensory neurons, and how these circuits change over development. Finally, this chapter ends with highlighting some recent advances made in motoneuron pathology, focusing on spinal muscular atrophy, amyotrophic lateral sclerosis, and axotomy.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Muscular Espinal , Esclerosis Amiotrófica Lateral/patología , Humanos , Neuronas Motoras , Músculos , Estudios Retrospectivos
10.
STAR Protoc ; 3(1): 101236, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35300003

RESUMEN

Loss of synapses on spinal motor neurons is a major feature of several neurodegenerative diseases; however, analyzing these premotor synapses is challenging because of their small size and high density. This protocol describes confocal and Stimulated Emission Depletion (STED) imaging of murine spinal premotor synapses and their segment-specific quantification by confocal microscopy. We detail the preparation of spinal cord segments, followed by image acquisition and analysis. This protocol enables in-depth analysis of pathological changes in spinal premotor synapses during neurodegeneration. For complete details on the use and execution of this protocol, please refer to Buettner et al. (2021).


Asunto(s)
Enfermedades Neurodegenerativas , Médula Espinal , Animales , Ratones , Microscopía Confocal , Neuronas Motoras , Médula Espinal/diagnóstico por imagen , Sinapsis
11.
Cell Rep ; 40(12): 111393, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130491

RESUMEN

The neuromuscular junction (NMJ) is an essential synapse whose loss is a key hallmark of the neurodegenerative disease spinal muscular atrophy (SMA). Here, we show that activity of the SMA-determining SMN protein in the assembly of U7 small nuclear ribonucleoprotein (snRNP)-which functions in the 3'-end processing of replication-dependent histone mRNAs-is required for NMJ integrity. Co-expression of U7-specific Lsm10 and Lsm11 proteins selectively enhances U7 snRNP assembly, corrects histone mRNA processing defects, and rescues key structural and functional abnormalities of neuromuscular pathology in SMA mice-including NMJ denervation, decreased synaptic transmission, and skeletal muscle atrophy. Furthermore, U7 snRNP dysfunction drives selective loss of the synaptic organizing protein Agrin at NMJs innervating vulnerable muscles of SMA mice. These findings reveal a direct contribution of U7 snRNP dysfunction to neuromuscular pathology in SMA and suggest a role for histone gene regulation in maintaining functional synaptic connections between motor neurons and muscles.


Asunto(s)
Atrofia Muscular Espinal , Enfermedades Neurodegenerativas , Agrina/metabolismo , Animales , Histonas/metabolismo , Ratones , Atrofia Muscular Espinal/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Unión Neuromuscular/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U7/química , Ribonucleoproteína Nuclear Pequeña U7/metabolismo
12.
Nat Neurosci ; 24(7): 930-940, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33795885

RESUMEN

The neurodegenerative disease spinal muscular atrophy (SMA) is caused by deficiency in the survival motor neuron (SMN) protein. Currently approved SMA treatments aim to restore SMN, but the potential for SMN expression beyond physiological levels is a unique feature of adeno-associated virus serotype 9 (AAV9)-SMN gene therapy. Here, we show that long-term AAV9-mediated SMN overexpression in mouse models induces dose-dependent, late-onset motor dysfunction associated with loss of proprioceptive synapses and neurodegeneration. Mechanistically, aggregation of overexpressed SMN in the cytoplasm of motor circuit neurons sequesters components of small nuclear ribonucleoproteins, leading to splicing dysregulation and widespread transcriptome abnormalities with prominent signatures of neuroinflammation and the innate immune response. Thus, long-term SMN overexpression interferes with RNA regulation and triggers SMA-like pathogenic events through toxic gain-of-function mechanisms. These unanticipated, SMN-dependent and neuron-specific liabilities warrant caution on the long-term safety of treating individuals with SMA with AAV9-SMN and the risks of uncontrolled protein expression by gene therapy.


Asunto(s)
Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Degeneración Nerviosa , Proteína 1 para la Supervivencia de la Neurona Motora/toxicidad , Animales , Dependovirus , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Técnicas de Transferencia de Gen , Terapia Genética/efectos adversos , Vectores Genéticos , Inyecciones Intraventriculares , Ratones , Trastornos Motores/genética , Trastornos Motores/metabolismo , Trastornos Motores/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética
13.
Nat Commun ; 12(1): 1451, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649316

RESUMEN

Proprioceptive feedback mainly derives from groups Ia and II muscle spindle (MS) afferents and group Ib Golgi tendon organ (GTO) afferents, but the molecular correlates of these three afferent subtypes remain unknown. We performed single cell RNA sequencing of genetically identified adult proprioceptors and uncovered five molecularly distinct neuronal clusters. Validation of cluster-specific transcripts in dorsal root ganglia and skeletal muscle demonstrates that two of these clusters correspond to group Ia MS afferents and group Ib GTO afferent proprioceptors, respectively, and suggest that the remaining clusters could represent group II MS afferents. Lineage analysis between proprioceptor transcriptomes at different developmental stages provides evidence that proprioceptor subtype identities emerge late in development. Together, our data provide comprehensive molecular signatures for groups Ia and II MS afferents and group Ib GTO afferents, enabling genetic interrogation of the role of individual proprioceptor subtypes in regulating motor output.


Asunto(s)
Mecanorreceptores/metabolismo , Husos Musculares/metabolismo , Neuronas Aferentes/metabolismo , Animales , Calbindina 2/metabolismo , Fenómenos Electrofisiológicos , Canales Iónicos/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Propiocepción , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Neurotransmisores/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma/genética
14.
Nat Commun ; 12(1): 5040, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413305

RESUMEN

SMN is a ubiquitously expressed protein and is essential for life. SMN deficiency causes the neurodegenerative disease spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. SMN interacts with itself and other proteins to form a complex that functions in the assembly of ribonucleoproteins. SMN is modified by SUMO (Small Ubiquitin-like Modifier), but whether sumoylation is required for the functions of SMN that are relevant to SMA pathogenesis is not known. Here, we show that inactivation of a SUMO-interacting motif (SIM) alters SMN sub-cellular distribution, the integrity of its complex, and its function in small nuclear ribonucleoproteins biogenesis. Expression of a SIM-inactivated mutant of SMN in a mouse model of SMA slightly extends survival rate with limited and transient correction of motor deficits. Remarkably, although SIM-inactivated SMN attenuates motor neuron loss and improves neuromuscular junction synapses, it fails to prevent the loss of sensory-motor synapses. These findings suggest that sumoylation is important for proper assembly and function of the SMN complex and that loss of this post-translational modification impairs the ability of SMN to correct selective deficits in the sensory-motor circuit of SMA mice.


Asunto(s)
Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/patología , Enfermedades Neurodegenerativas/patología , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/metabolismo , Sumoilación , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Sinapsis/patología , Pez Cebra
15.
Sci Transl Med ; 13(578)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504650

RESUMEN

Gene replacement and pre-mRNA splicing modifier therapies represent breakthrough gene targeting treatments for the neuromuscular disease spinal muscular atrophy (SMA), but mechanisms underlying variable efficacy of treatment are incompletely understood. Our examination of severe infantile onset human SMA tissues obtained at expedited autopsy revealed persistence of developmentally immature motor neuron axons, many of which are actively degenerating. We identified similar features in a mouse model of severe SMA, in which impaired radial growth and Schwann cell ensheathment of motor axons began during embryogenesis and resulted in reduced acquisition of myelinated axons that impeded motor axon function neonatally. Axons that failed to ensheath degenerated rapidly postnatally, specifically releasing neurofilament light chain protein into the blood. Genetic restoration of survival motor neuron protein (SMN) expression in mouse motor neurons, but not in Schwann cells or muscle, improved SMA motor axon development and maintenance. Treatment with small-molecule SMN2 splice modifiers beginning immediately after birth in mice increased radial growth of the already myelinated axons, but in utero treatment was required to restore axonal growth and associated maturation, prevent subsequent neonatal axon degeneration, and enhance motor axon function. Together, these data reveal a cellular basis for the fulminant neonatal worsening of patients with infantile onset SMA and identify a temporal window for more effective treatment. These findings suggest that minimizing treatment delay is critical to achieve optimal therapeutic efficacy.


Asunto(s)
Atrofia Muscular Espinal , Animales , Axones , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética
16.
J Neurosci ; 29(15): 4719-35, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19369542

RESUMEN

The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin 1 receptor ErbB2 from muscle precursors. However, despite a modest ( approximately 30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by approximately 80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections but not their initial formation or their specificity.


Asunto(s)
Vías Aferentes/fisiología , Neuronas Motoras/fisiología , Husos Musculares/fisiología , Neurotrofina 3/fisiología , Células Receptoras Sensoriales/fisiología , Potenciales Sinápticos/fisiología , Vías Aferentes/patología , Animales , Potenciales Postsinápticos Excitadores/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/patología , Husos Musculares/anomalías , Husos Musculares/fisiopatología , Neurotrofina 3/genética , Receptor ErbB-2/deficiencia , Receptor ErbB-2/genética , Receptor ErbB-2/fisiología , Células Receptoras Sensoriales/patología , Potenciales Sinápticos/genética
17.
J Neurophysiol ; 103(6): 3407-23, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20393069

RESUMEN

The central pattern generator can generate locomotor-like rhythmic activity in the spinal cord in the absence of descending and peripheral inputs, but the motor pattern is regulated by feedback from peripheral sensory inputs that adjust motor outputs to external stimuli. To elucidate the possible role of Hb9-expressing interneurons (Hb9 INs) in the locomotor circuitry, we investigated whether their induced oscillatory activity is modulated by low-threshold afferents in the isolated spinal cords of neonatal Hb9:eGFP transgenic mice. Low-intensity stimulation of segmental afferents generated short-latency, monosynaptic excitatory responses in 62% of Hb9 INs. These were associated with longer-latency (approximately 13 ms) excitatory postsynaptic currents that were evoked in all Hb9 INs, probably by slow conducting afferents that synapse directly onto them. Concomitant morphological analysis confirmed that afferent axons with immunoreactive expression of vesicular glutamate transporter-1 and parvalbumin, presumably from primary afferents, contacted somata and dendrites of all Hb9 INs. Most of the putative synaptic contacts were on distal dendrites that extended to an area with profuse afferent projections. We next examined whether low-threshold afferents in upper (flexor-related) and lower (extensor-related) lumbar segments altered the timing of neurochemically induced locomotor-like rhythms in Hb9 INs and motoneurons. Excitation of flexor-related afferents during the flexor phase delayed the onset of subsequent cycles in both Hb9 INs and segmental motoneurons while maintaining the phase relationship between them. The in-phase correlation between voltage oscillations in Hb9 INs and motor bursts also persisted during the two- to threefold increase in cycle period triggered by extensor-related afferents. Our findings that low-threshold, presumably muscle afferents, synapse directly onto these interneurons and perturb their induced locomotor-like membrane oscillations in a pattern that remains phase-locked with motor bursts support the hypothesis that Hb9 INs are part of the sensorimotor circuitry that regulates the pattern of locomotor rhythms in the isolated cord.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Locomoción/fisiología , Potenciales de la Membrana/fisiología , Periodicidad , Médula Espinal/citología , Factores de Transcripción/metabolismo , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Vías Aferentes/fisiología , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Técnicas In Vitro , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Médula Espinal/fisiología , Factores de Transcripción/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
18.
Cell Rep ; 29(12): 3885-3901.e5, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851921

RESUMEN

Reduced expression of the survival motor neuron (SMN) protein causes the neurodegenerative disease spinal muscular atrophy (SMA). Here, we show that adeno-associated virus serotype 9 (AAV9)-mediated delivery of Stasimon-a gene encoding an endoplasmic reticulum (ER)-resident transmembrane protein regulated by SMN-improves motor function in a mouse model of SMA through multiple mechanisms. In proprioceptive neurons, Stasimon overexpression prevents the loss of afferent synapses on motor neurons and enhances sensory-motor neurotransmission. In motor neurons, Stasimon suppresses neurodegeneration by reducing phosphorylation of the tumor suppressor p53. Moreover, Stasimon deficiency converges on SMA-related mechanisms of p53 upregulation to induce phosphorylation of p53 through activation of p38 mitogen-activated protein kinase (MAPK), and pharmacological inhibition of this kinase prevents motor neuron death in SMA mice. These findings identify Stasimon dysfunction induced by SMN deficiency as an upstream driver of distinct cellular cascades that lead to synaptic loss and motor neuron degeneration, revealing a dual contribution of Stasimon to motor circuit pathology in SMA.


Asunto(s)
Proteínas de la Membrana/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/etiología , Células Receptoras Sensoriales/patología , Proteína 1 para la Supervivencia de la Neurona Motora/fisiología , Sinapsis/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Dependovirus/genética , Proteínas de la Membrana/administración & dosificación , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Células Receptoras Sensoriales/metabolismo , Sinapsis/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
19.
Cell Rep ; 29(10): 3087-3100.e7, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801075

RESUMEN

Movement is an essential behavior requiring the assembly and refinement of spinal motor circuits. However, the mechanisms responsible for circuit refinement and synapse maintenance are poorly understood. Similarly, the molecular mechanisms by which gene mutations cause dysfunction and elimination of synapses in neurodegenerative diseases that occur during development are unknown. Here, we demonstrate that the complement protein C1q is required for the refinement of sensory-motor circuits during normal development, as well as for synaptic dysfunction and elimination in spinal muscular atrophy (SMA). C1q tags vulnerable SMA synapses, which triggers activation of the classical complement pathway leading to microglia-mediated elimination. Pharmacological inhibition of C1q or depletion of microglia rescues the number and function of synapses, conferring significant behavioral benefit in SMA mice. Thus, the classical complement pathway plays critical roles in the refinement of developing motor circuits, while its aberrant activation contributes to motor neuron disease.


Asunto(s)
Vía Clásica del Complemento/fisiología , Microglía/metabolismo , Atrofia Muscular Espinal/metabolismo , Animales , Preescolar , Complemento C1q/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Sinapsis/metabolismo
20.
Neuron ; 100(1): 135-149.e7, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308166

RESUMEN

Neuronal diversification is a fundamental step in the construction of functional neural circuits, but how neurons generated from single progenitor domains acquire diverse subtype identities remains poorly understood. Here we developed an embryonic stem cell (ESC)-based system to model subtype diversification of V1 interneurons, a class of spinal neurons comprising four clades collectively containing dozens of molecularly distinct neuronal subtypes. We demonstrate that V1 subtype diversity can be modified by extrinsic signals. Inhibition of Notch and activation of retinoid signaling results in a switch to MafA clade identity and enriches differentiation of Renshaw cells, a specialized MafA subtype that mediates recurrent inhibition of spinal motor neurons. We show that Renshaw cells are intrinsically programmed to migrate to species-specific laminae upon transplantation and to form subtype-specific synapses with motor neurons. Our results demonstrate that stem cell-derived neuronal subtypes can be used to investigate mechanisms underlying neuronal subtype specification and circuit assembly.


Asunto(s)
Interneuronas/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Sinapsis/metabolismo , Animales , Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Interneuronas/metabolismo , Ratones , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Células-Madre Neurales/metabolismo , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA