Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445425

RESUMEN

Cardiovascular disease is the main cause of death worldwide, making it crucial to search for new therapies to mitigate major adverse cardiac events (MACEs) after a cardiac ischemic episode. Drugs in the class of the glucagon-like peptide-1 receptor agonists (GLP1Ra) have demonstrated benefits for heart function and reduced the incidence of MACE in patients with diabetes. Previously, we demonstrated that a short-acting GLP1Ra known as DMB (2-quinoxalinamine, 6,7-dichloro-N-[1,1-dimethylethyl]-3-[methylsulfonyl]-,6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline or compound 2, Sigma) also mitigates adverse postinfarction left ventricular remodeling and cardiac dysfunction in lean mice through activation of parkin-mediated mitophagy following infarction. Here, we combined proteomics with in silico analysis to characterize the range of effects of DMB in vivo throughout the course of early postinfarction remodeling. We demonstrate that the mitochondrion is a key target of DMB and mitochondrial respiration, oxidative phosphorylation and metabolic processes such as glycolysis and fatty acid beta-oxidation are the main biological processes being regulated by this compound in the heart. Moreover, the overexpression of proteins with hub properties identified by protein-protein interaction networks, such as Atp2a2, may also be important to the mechanism of action of DMB. Data are available via ProteomeXchange with identifier PXD027867.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteómica/métodos , Quinoxalinas/administración & dosificación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Remodelación Ventricular/efectos de los fármacos , Animales , Biología Computacional , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón/agonistas , Glucólisis , Masculino , Ratones , Fosforilación Oxidativa , Mapas de Interacción de Proteínas , Quinoxalinas/farmacología
2.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008865

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) inhibitors such as empagliflozin are known to reduce the risk of hospitalizations related to heart failure irrespective of diabetic state. Meanwhile, adverse cardiac remodeling remains the leading cause of heart failure and death in the USA. Thus, understanding the mechanisms that are responsible for the beneficial effects of SGLT2 inhibitors is of the utmost relevance and importance. Our previous work illustrated a connection between adverse cardiac remodeling and the regulation of mitochondrial turnover and cellular energetics using a short-acting glucagon-like peptide-1 receptor agonist (GLP1Ra). Here, we sought to determine if the mechanism of the SGLT2 inhibitor empagliflozin (EMPA) in ameliorating adverse remodeling was similar and/or to identify what differences exist, if any. To this end, we administered permanent coronary artery ligation to induce adverse remodeling in wild-type and Parkin knockout mice and examined the progression of adverse cardiac remodeling with or without EMPA treatment over time. Like GLP1Ra, we found that EMPA affords a robust attenuation of PCAL-induced adverse remodeling. Interestingly, unlike the GLP1Ra, EMPA does not require Parkin to improve/maintain mitochondria-related cellular energetics and afford its benefits against developing adverse remodeling. These findings suggests that further investigation of EMPA is warranted as a potential path for developing therapy against adverse cardiac remodeling for patients that may have Parkin and/or mitophagy-related deficiencies.


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Metabolismo Energético , Glucósidos/uso terapéutico , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/fisiopatología , Biogénesis de Organelos , Remodelación Ventricular , Animales , Compuestos de Bencidrilo/farmacología , Electrocardiografía , Metabolismo Energético/efectos de los fármacos , Glucósidos/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Mitofagia/efectos de los fármacos , Infarto del Miocardio/diagnóstico por imagen , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo , Remodelación Ventricular/efectos de los fármacos
3.
Artif Organs ; 42(5): 500-509, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29349805

RESUMEN

Clinical studies using total artificial hearts (TAHs) have demonstrated that pediatric and adult patients derive quality-of-life benefits from this form of therapy. Two clinically-approved TAHs and other pumps under development, however, have design challenges and limitations, including thromboembolic events, neurologic impairment, infection risk due to large size and percutaneous drivelines, and lack of ambulation, to name a few. To address these limitations, we are developing a hybrid-design, continuous-flow, implantable or extracorporeal, magnetically-levitated TAH for pediatric and adult patients with heart failure. This TAH has only two moving parts: an axial impeller for the pulmonary circulation and a centrifugal impeller for the systemic circulation. This device will utilize the latest generation of magnetic bearing technology. Initial geometries were established using pump design equations, and computational modeling provided insight into pump performance. The designs were the basis for prototype manufacturing and hydraulic testing. The study results demonstrate that the TAH is capable of delivering target blood flow rates of 1-6.5 L/min with pressure rises of 1-92 mm Hg for the pulmonary circulation and 24-150 mm Hg for the systemic circulation at 1500-10 000 rpm. This initial design of the TAH was successful and serves as the foundation to continue its development as a novel, more compact, nonthrombogenic, and effective therapeutic alternative for infants, children, adolescents, and adults with heart failure.


Asunto(s)
Corazón Artificial , Adolescente , Adulto , Algoritmos , Velocidad del Flujo Sanguíneo , Niño , Simulación por Computador , Diseño de Equipo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Corazón Artificial/efectos adversos , Humanos , Lactante , Modelos Cardiovasculares
4.
Am J Physiol Heart Circ Physiol ; 311(1): H219-28, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199111

RESUMEN

Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation.


Asunto(s)
Autofagia , Ayuno/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Obesidad/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Infarto del Miocardio/etiología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Obesidad/complicaciones , Obesidad/patología , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Mapas de Interacción de Proteínas , Proteolisis , Proteómica/métodos , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
5.
J Mol Cell Cardiol ; 83: 44-54, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25543002

RESUMEN

Autophagy, a cellular housekeeping process, is essential to maintain tissue homeostasis, particularly in long-lived cells such as cardiomyocytes. Autophagic activity declines with age and may explain many features of age-related cardiac dysfunction. In this review we summarize the current state of knowledge regarding age-related changes in autophagy in the heart. Recent findings from studies in human hearts are presented, including evidence that the autophagic response is intact in the aged human heart. Impaired autophagic clearance of protein aggregates or deteriorating mitochondria will have multiple consequences including increased arrhythmia risk, decreased contractile function, reduced tolerance to ischemic stress, and increased inflammation; thus autophagy represents a potentially important therapeutic target to mitigate the cardiac consequences of aging. This article is part of a Special Issue entitled CV Aging.


Asunto(s)
Envejecimiento/metabolismo , Arritmias Cardíacas/genética , Autofagia/genética , Miocardio/metabolismo , Envejecimiento/patología , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Regulación de la Expresión Génica , Homeostasis , Humanos , Longevidad , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
J Card Surg ; 30(11): 856-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26404743

RESUMEN

We present a review of the evolution of total artificial hearts (TAHs) and new directions in development, including the coupling of VADs as biventricular TAH support.


Asunto(s)
Insuficiencia Cardíaca/terapia , Corazón Artificial/tendencias , Corazón Auxiliar/tendencias , Humanos
7.
J Bioenerg Biomembr ; 46(4): 337-45, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25005682

RESUMEN

Complex I deficiency is difficult to treat because of the size and complexity of the multi-subunit enzyme complex. Mutations or deletions in the mitochondrial genome are not amenable to gene therapy. However, animal studies have shown that yeast-derived internal NADH quinone oxidoreductase (Ndi1) can be delivered as a cell-permeable recombinant protein (Tat-Ndi1) that can functionally replace complex I damaged by ischemia/reperfusion. Current and future treatment of disorders affecting complex I are discussed, including the use of Tat-Ndi1.


Asunto(s)
Péptidos de Penetración Celular/uso terapéutico , Complejo I de Transporte de Electrón/uso terapéutico , Enfermedades Mitocondriales/tratamiento farmacológico , Proteínas de Saccharomyces cerevisiae/uso terapéutico , Saccharomyces cerevisiae/enzimología , Animales , Péptidos de Penetración Celular/genética , Complejo I de Transporte de Electrón/genética , Humanos , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Annu Rev Physiol ; 72: 45-59, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20148666

RESUMEN

The study of autophagy has been transformed by the cloning of most genes in the pathway and the introduction of GFP-LC3 as a reporter to allow visual assessment of autophagy. The field of cardiac biology is not alone in attempting to understand the implications of autophagy. The purpose of this review is to address some of the controversies and conundrums associated with the evolving studies of autophagy in the heart. Autophagy is a cellular process involving a complex orchestration of regulatory gene products as well as machinery for assembly, selective targeting, and degradation of autophagosomes and their contents. Our understanding of the role of autophagy in human disease is rapidly evolving as investigators examine the process in different tissues and different pathophysiological contexts. In the field of heart disease, autophagy has been examined in the settings of ischemia and reperfusion, preconditioning, cardiac hypertrophy, and heart failure. This review addresses the role of autophagy in cardioprotection, the balance of catabolism and anabolism, the concept of mitochondrial quality control, and the implications of impaired autophagic flux or frustrated autophagy.


Asunto(s)
Autofagia/fisiología , Cardiopatías/patología , Corazón/fisiología , Estrés Fisiológico , Animales , Humanos , Insulina/fisiología , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/fisiología , Isquemia Miocárdica/patología , Transducción de Señal/fisiología
9.
Heart Fail Rev ; 18(5): 575-84, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23188163

RESUMEN

Whether an element of routine housekeeping or in the setting of imminent disaster, it is a good idea to get one's affairs in order. Autophagy, the process of recycling organelles and protein aggregates, is a basal homeostatic process and an evolutionarily conserved response to starvation and other forms of metabolic stress. Our understanding of the role of autophagy in the heart is changing rapidly as new information becomes available. This review examines the role of autophagy in the heart in the setting of cardioprotection, hypertrophy, and heart failure. Contradictory findings are reconciled in light of recent developments. The preponderance of evidence favors a beneficial role for autophagy in the heart under most conditions.


Asunto(s)
Autofagia/fisiología , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/patología , Estrés Fisiológico , Animales , Insuficiencia Cardíaca/metabolismo , Humanos , Miocitos Cardíacos/metabolismo
10.
J Cardiovasc Pharmacol ; 60(2): 125-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22472909

RESUMEN

Autophagy is a housekeeping process that helps to maintain cellular energy homeostasis and remove damaged organelles. In the heart, autophagy is an adaptive process that is activated in response to stress including acute and chronic ischemia. Given the evidence that autophagy is suppressed in energy-rich conditions, the objective of this review is to examine autophagy and cardioprotection in the setting of the metabolic syndrome. Clinical approaches that involve the induction of cardiac autophagy pharmacologically to enhance the heart's tolerance to ischemia are also discussed.


Asunto(s)
Autofagia , Metabolismo Energético , Precondicionamiento Isquémico Miocárdico , Síndrome Metabólico/complicaciones , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/patología , Animales , Humanos , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Estrés Fisiológico , Remodelación Ventricular
11.
Matrix Biol ; 110: 40-59, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35470068

RESUMEN

Heart failure is accompanied by adverse cardiac remodeling involving extracellular matrix (ECM). Cardiac ECM acts as a major reservoir for many proteins including growth factors, cytokines, collagens, and proteoglycans. Activated fibroblasts during cardiac injury can alter the composition and activity of these ECM proteins. Through unbiased analysis of a microarray dataset of human heart tissue comparing normal hearts (n = 135) to hearts with ischemic cardiomyopathy (n = 94), we identified Asporin (ASPN) as the top differentially regulated gene (DEG) in ischemic cardiomyopathy; its gene-ontology terms relate closely to fibrosis and cell death. ASPN is a Class I small leucine repeat protein member implicated in cancer, osteoarthritis, and periodontal ligament mineralization. However, its role in cardiac remodeling is still unknown. Here, we initially confirmed our big dataset analysis through cells, mice, and clinical atrial biopsy samples to demonstrate increased Aspn expression after pressure overload or cardiac ischemia/reperfusion injury. We tested the hypothesis that Aspn, being a TGFß1 inhibitor, can attenuate fibrosis in mouse models of cardiac injury. We found that Aspn is released by cardiac fibroblasts and attenuates TGFß signaling. Moreover, Aspn-/- mice displayed increased fibrosis and decreased cardiac function after pressure overload by transverse aortic constriction (TAC) in mice. In addition, Aspn protected cardiomyocytes from hypoxia/reoxygenation-induced cell death and regulated mitochondrial bioenergetics in cardiomyocytes. Increased infarct size after ischemia/reperfusion injury in Aspn-/- mice confirmed Aspn's contribution to cardiomyocyte viability. Echocardiography revealed greater reduction in left ventricular systolic function post-I/R in the Aspn-/- animals compared to wild type. Furthermore, we developed an ASPN-mimic peptide using molecular modeling and docking which when administered to mice prevented TAC-induced fibrosis and preserved heart function. The peptide also reduced infarct size after I/R in mice, demonstrating the translational potential of ASPN-based therapy. Thus, we establish the role of ASPN as a critical ECM molecule that regulates cardiac remodeling to preserve heart function.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Daño por Reperfusión , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibrosis , Insuficiencia Cardíaca/patología , Infarto/metabolismo , Infarto/patología , Isquemia , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/patología , Remodelación Ventricular
12.
Circulation ; 122(11 Suppl): S179-84, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20837911

RESUMEN

BACKGROUND: Emerging evidence suggests that "adaptive" induction of autophagy (the cellular process responsible for the degradation and recycling of proteins and organelles) may confer a cardioprotective phenotype and represent a novel strategy to limit ischemia-reperfusion injury. Our aim was to test this paradigm in a clinically relevant, large animal model of acute myocardial infarction. METHODS AND RESULTS: Anesthetized pigs underwent 45 minutes of coronary artery occlusion and 3 hours of reperfusion. In the first component of the study, pigs received chloramphenicol succinate (CAPS) (an agent that purportedly upregulates autophagy; 20 mg/kg) or saline at 10 minutes before ischemia. Infarct size was delineated by tetrazolium staining and expressed as a % of the at-risk myocardium. In separate animals, myocardial samples were harvested at baseline and 10 minutes following CAPS treatment and assayed (by immunoblotting) for 2 proteins involved in autophagosome formation: Beclin-1 and microtubule-associated protein light chain 3-II. To investigate whether the efficacy of CAPS was maintained with "delayed" treatment, additional pigs received CAPS (20 mg/kg) at 30 minutes after occlusion. Expression of Beclin-1 and microtubule-associated protein light chain 3-II, as well as infarct size, were assessed at end-reperfusion. CAPS was cardioprotective: infarct size was 25±5 and 41±4%, respectively, in the CAPS-pretreated and CAPS-delayed treatment groups versus 56±5% in saline controls (P<0.01 and P<0.05 versus control). Moreover, administration of CAPS was associated with increased expression of both proteins. CONCLUSIONS: Our results demonstrate attenuation of ischemia-reperfusion injury with CAPS and are consistent with the concept that induction of autophagy may provide a novel strategy to confer cardioprotection.


Asunto(s)
Cardiotónicos/farmacología , Cloranfenicol/análogos & derivados , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Animales , Antibacterianos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Cloranfenicol/farmacología , Manejo de la Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/biosíntesis , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Porcinos
13.
Curr Cardiol Rev ; 17(4): e230421186874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33059566

RESUMEN

There is considerable evidence that autophagy in cardiomyocytes is activated by hypoxia/ reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Besides the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules, including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose of this review was to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


Asunto(s)
Daño por Reperfusión , Autofagia , Humanos , Sulfuro de Hidrógeno , Isquemia , Miocitos Cardíacos , Óxido Nítrico , Especies Reactivas de Oxígeno
14.
Am J Physiol Heart Circ Physiol ; 298(2): H570-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20008275

RESUMEN

Previously, we showed that sulfaphenazole (SUL), an antimicrobial agent that is a potent inhibitor of cytochrome P4502C9, is protective against ischemia-reperfusion (I/R) injury (Ref. 15). The mechanism, however, underlying this cardioprotection, is largely unknown. With evidence that activation of autophagy is protective against simulated I/R in HL-1 cells, and evidence that autophagy is upregulated in preconditioned hearts, we hypothesized that SUL-mediated cardioprotection might resemble ischemic preconditioning with respect to activation of protein kinase C and autophagy. We used the Langendorff model of global ischemia to assess the role of autophagy and protein kinase C in myocardial protection by SUL during I/R. We show that SUL enhanced recovery of function, reduced creatine kinase release, decreased infarct size, and induced autophagy. SUL also triggered PKC translocation, whereas inhibition of PKC with chelerythrine blocked the activation of autophagy in adult rat cardiomyocytes. In the Langendorff model, chelerythrine suppressed autophagy and abolished the protection mediated by SUL. SUL increased autophagy in adult rat cardiomyocytes infected with GFP-LC3 adenovirus, in isolated perfused rat hearts, and in mCherry-LC3 transgenic mice. To establish the role of autophagy in cardioprotection, we used the cell-permeable dominant-negative inhibitor of autophagy, Tat-Atg5(K130R). Autophagy and cardioprotection were abolished in rat hearts perfused with recombinant Tat-Atg5(K130R). Taken together, these studies indicate that cardioprotection mediated by SUL involves a PKC-dependent induction of autophagy. The findings suggest that autophagy may be a fundamental process that enhances the heart's tolerance to ischemia.


Asunto(s)
Antiinfecciosos/uso terapéutico , Autofagia/fisiología , Daño por Reperfusión Miocárdica/prevención & control , Proteína Quinasa C/metabolismo , Sulfafenazol/uso terapéutico , Adenoviridae/genética , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia , Benzofenantridinas/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína Quinasa C-delta/metabolismo , Proteínas/farmacología , Ratas , Sulfafenazol/farmacología
15.
Basic Res Cardiol ; 105(6): 677-86, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20865418

RESUMEN

Ischemic heart disease (IHD) is the leading cause of death worldwide. Novel cardioprotective strategies are therefore required to improve clinical outcomes in patients with IHD. Although a large number of novel cardioprotective strategies have been discovered in the research laboratory, their translation to the clinical setting has been largely disappointing. The reason for this failure can be attributed to a number of factors including the inadequacy of the animal ischemia-reperfusion injury models used in the preclinical cardioprotection studies and the inappropriate design and execution of the clinical cardioprotection studies. This important issue was the main topic of discussion of the UCL-Hatter Cardiovascular Institute 6th International Cardioprotection Workshop, the outcome of which has been published in this article as the "Hatter Workshop Recommendations". These have been proposed to provide guidance on the design and execution of both preclinical and clinical cardioprotection studies in order to facilitate the translation of future novel cardioprotective strategies for patient benefit.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Poscondicionamiento Isquémico , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio/prevención & control , Isquemia Miocárdica/terapia , Daño por Reperfusión Miocárdica/prevención & control , Investigación Biomédica Traslacional , Factores de Edad , Animales , Modelos Animales de Enfermedad , Humanos , Factores Sexuales , Especificidad de la Especie , Resultado del Tratamiento
16.
Sci Rep ; 10(1): 8284, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427925

RESUMEN

Given that adverse remodeling is the leading cause of heart failure and death in the USA, there is an urgent unmet need to develop new methods in dealing with this devastating disease. Here we evaluated the efficacy of a short-course glucagon-like peptide-1 receptor agonist therapy-specifically 2-quinoxalinamine, 6,7-dichloro-N-(1,1-dimethylethyl)-3-(methylsulfonyl)-,6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB; aka Compound 2) - in attenuating adverse LV remodeling. We also examined the role, if any, of mitochondrial turnover in this process. Wild-type, Parkin knockout and MitoTimer-expressing mice were subjected to permanent coronary artery ligation, then treated briefly with DMB. LV remodeling and cardiac function were assessed by histology and echocardiography. Autophagy and mitophagy markers were examined by western blot and mitochondrial biogenesis was inferred from MitoTimer protein fluorescence and qPCR. We found that DMB given post-infarction significantly reduced adverse LV remodeling and the decline of cardiac function. This paralleled an increase in autophagy, mitophagy and mitochondrial biogenesis. The salutary effects of the drug were lost in Parkin knockout mice, implicating Parkin-mediated mitophagy as part of its mechanism of action. Our findings suggest that enhancing Parkin-associated mitophagy and mitochondrial biogenesis after infarction is a viable target for therapeutic mitigation of adverse remodeling.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Quinoxalinas/administración & dosificación , Ubiquitina-Proteína Ligasas/genética , Remodelación Ventricular/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Pruebas de Función Cardíaca , Masculino , Ratones , Ratones Noqueados , Mitofagia , Infarto del Miocardio/etiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Quinoxalinas/farmacología , Ratas
17.
Basic Res Cardiol ; 104(2): 169-80, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19242643

RESUMEN

Autophagy is a critical cellular housekeeping process that is essential for removal of damaged or unwanted organelles and protein aggregates. Under conditions of starvation, it is also a mechanism to break down proteins to generate amino acids for synthesis of new and more urgently needed proteins. In the heart, autophagy is upregulated by starvation, reactive oxygen species, hypoxia, exercise, and ischemic preconditioning, the latter a well-known potent cardioprotective phenomenon. The observation that upregulation of autophagy confers protection against ischemia/reperfusion injury and inhibition of autophagy is associated with a loss of cardioprotection conferred by pharmacological conditioning suggests that the pathway plays a key role in enhancing the heart's tolerance to ischemia. While many of the antecedent signaling pathways of preconditioning are well-defined, the mechanisms by which preconditioning and autophagy converge to protect the heart are unknown. In this review we discuss mechanisms that potentially underlie the linkage between cardioprotection and autophagy in the heart.


Asunto(s)
Autofagia/fisiología , Citoprotección/fisiología , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Humanos
18.
Basic Res Cardiol ; 104(2): 157-67, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19242639

RESUMEN

We have shown that the cellular process of macroautophagy plays a protective role in HL-1 cardiomyocytes subjected to simulated ischemia/reperfusion (sI/R) (Hamacher-Brady et al. in J Biol Chem 281(40):29776-29787). Since the nucleoside adenosine has been shown to mimic both early and late phase ischemic preconditioning, a potent cardioprotective phenomenon, the purpose of this study was to determine the effect of adenosine on autophagosome formation. Autophagy is a highly regulated intracellular degradation process by which cells remove cytosolic long-lived proteins and damaged organelles, and can be monitored by imaging the incorporation of microtubule-associated light chain 3 (LC3) fused to a fluorescent protein (GFP or mCherry) into nascent autophagosomes. We investigated the effect of adenosine receptor agonists on autophagy and cell survival following sI/R in GFP-LC3 infected HL-1 cells and neonatal rat cardiomyocytes. The A(1) adenosine receptor agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) (100 nM) caused an increase in the number of autophagosomes within 10 min of treatment; the effect persisted for at least 300 min. A significant inhibition of autophagy and loss of protection against sI/R measured by release of lactate dehydrogenase (LDH), was demonstrated in CCPA-pretreated cells treated with an A(1) receptor antagonist, a phospholipase C inhibitor, or an intracellular Ca(+2) chelator. To determine whether autophagy was required for the protective effect of CCPA, autophagy was blocked with a dominant negative inhibitor (Atg5(K130R)) delivered by transient transfection (in HL-1 cells) or protein transduction (in adult rat cardiomyocytes). CCPA attenuated LDH release after sI/R, but protection was lost when autophagy was blocked. To assess autophagy in vivo, transgenic mice expressing the red fluorescent autophagy marker mCherry-LC3 under the control of the alpha myosin heavy chain promoter were treated with CCPA 1 mg/kg i.p. Fluorescence microscopy of cryosections taken from the left ventricle 30 min after CCPA injection revealed a large increase in the number of mCherry-LC3-labeled structures, indicating the induction of autophagy by CCPA in vivo. Taken together, these results indicate that autophagy plays an important role in mediating the cardioprotective effects conferred by adenosine pretreatment.


Asunto(s)
Agonistas del Receptor de Adenosina A1 , Adenosina/análogos & derivados , Autofagia/fisiología , Citoprotección/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Adenosina/farmacología , Animales , Células Cultivadas , Precondicionamiento Isquémico , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Transfección
19.
Sci Rep ; 9(1): 10001, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292486

RESUMEN

Animal studies have demonstrated beneficial effects of therapeutic hypothermia on myocardial function, yet exact mechanisms remain unclear. Impaired autophagy leads to heart failure and mitophagy is important for mitigating ischemia/reperfusion injury. This study aims to investigate whether the beneficial effects of therapeutic hypothermia are due to preserved autophagy and mitophagy. Under general anesthesia, the left anterior descending coronary artery of 19 female farm pigs was occluded for 90 minutes with consecutive reperfusion. 30 minutes after reperfusion, we performed pericardial irrigation with warm or cold saline for 60 minutes. Myocardial tissue analysis was performed one and four weeks after infarction. Therapeutic hypothermia induced a significant increase in autophagic flux, mitophagy, mitochondrial mass and function in the myocardium after infarction. Cell stress, apoptosis, inflammation as well as fibrosis were reduced, with significant preservation of systolic and diastolic function four weeks post infarction. We found similar biochemical changes in human samples undergoing open chest surgery under hypothermic conditions when compared to the warm. These results suggest that autophagic flux and mitophagy are important mechanisms implicated in cardiomyocyte recovery after myocardial infarction under hypothermic conditions. New therapeutic strategies targeting these pathways directly could lead to improvements in prevention of heart failure.


Asunto(s)
Hipotermia Inducida/métodos , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/terapia , Animales , Apoptosis , Autofagia , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Humanos , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/metabolismo , Porcinos , Resultado del Tratamiento
20.
Ann Surg ; 248(2): 329-36, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18650645

RESUMEN

BACKGROUND: The Veterans Affairs' (VA) National Surgical Quality Improvement Program (NSQIP) has been associated with significant reductions in postoperative morbidity and mortality. We sought to determine if NSQIP methods and risk models were applicable to private sector (PS) hospitals and if implementation of the NSQIP in the PS would be associated with reductions in adverse postoperative outcomes. METHODS: Data from patients (n = 184,843) undergoing major general or vascular surgery between October 1, 2001, and September 30, 2004, in 128 VA hospitals and 14 academic PS hospitals were used to develop prediction models based on VA patients only, PS patients only, and VA plus PS patients using logistic regression modeling, with measures of patient-related risk as the independent variables and 30-day postoperative morbidity or mortality as the dependent variable. RESULTS: Nine of the top 10 predictors of postoperative mortality and 7 of the top 10 for postoperative morbidity were the same in the VA and PS models. The ratios of observed to expected mortality and morbidity in the PS hospitals based on a model using PS data only versus VA + PS data were nearly identical (correlation coefficient = 0.98). Outlier status of PS hospitals was concordant in 26 of 28 comparisons. Implementation of the NSQIP in PS hospitals was associated with statistically significant reductions in overall postoperative morbidity (8.7%, P = 0.002), surgical site infections (9.1%, P = 0.02), and renal complications (23.7%, P = 0.004). CONCLUSIONS: The VA NSQIP methods and risk models in general and vascular surgery were fully applicable to PS hospitals. Thirty-day postoperative morbidity in PS hospitals was reduced with the implementation of the NSQIP.


Asunto(s)
Implementación de Plan de Salud/organización & administración , Mortalidad Hospitalaria/tendencias , Hospitales Privados/normas , Hospitales de Veteranos/normas , Garantía de la Calidad de Atención de Salud , Procedimientos Quirúrgicos Operativos/normas , Estudios de Evaluación como Asunto , Femenino , Humanos , Modelos Logísticos , Masculino , Estudios Multicéntricos como Asunto , Innovación Organizacional , Sector Privado , Evaluación de Programas y Proyectos de Salud , Indicadores de Calidad de la Atención de Salud , Administración de la Seguridad/organización & administración , Procedimientos Quirúrgicos Operativos/mortalidad , Estados Unidos , United States Department of Veterans Affairs
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA