Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Blood ; 141(10): 1209-1220, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36375119

RESUMEN

Understanding the functional role of mutated genes in cancer is required to translate the findings of cancer genomics into therapeutic improvement. BTG1 is recurrently mutated in the MCD/C5 subtype of diffuse large B-cell lymphoma (DLBCL), which is associated with extranodal dissemination. Here, we provide evidence that Btg1 knock out accelerates the development of a lethal lymphoproliferative disease driven by Bcl2 overexpression. Furthermore, we show that the scaffolding protein BCAR1 is a BTG1 partner. Moreover, after BTG1 deletion or expression of BTG1 mutations observed in patients with DLBCL, the overactivation of the BCAR1-RAC1 pathway confers increased migration ability in vitro and in vivo. These modifications are targetable with the SRC inhibitor dasatinib, which opens novel therapeutic opportunities in BTG1 mutated DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/patología , Mutación , Genes cdc , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Sustrato Asociada a CrK/genética , Proteína Sustrato Asociada a CrK/metabolismo
2.
J Mol Evol ; 91(5): 616-627, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37341745

RESUMEN

Hox genes encode Homeodomain-containing transcription factors, which specify segmental identities along the anterior-posterior axis. Functional changes in Hox genes have been directly implicated in the evolution of body plans across the metazoan lineage. The Hox protein Ultrabithorax (Ubx) is expressed and required in developing third thoracic (T3) segments in holometabolous insects studied so far, particularly, of the order Coleoptera, Lepidoptera and Diptera. Ubx function is key to specify differential development of the second (T2) and T3 thoracic segments in these insects. While Ubx is expressed in the third thoracic segment in developing larvae of Hymenopteran Apis mellifera, the morphological differences between T2 and T3 are subtle. To identify evolutionary changes that are behind the differential function of Ubx in Drosophila and Apis, which are diverged for more than 350 million years, we performed comparative analyses of genome wide Ubx-binding sites between these two insects. Our studies reveal that a motif with a TAAAT core is a preferred binding site for Ubx in Drosophila, but not in Apis. Biochemical and transgenic assays suggest that in Drosophila, the TAAAT core sequence in the Ubx binding sites is required for Ubx-mediated regulation of two of its target genes studied here; CG13222, a gene that is normally upregulated by Ubx and vestigial (vg), whose expression is repressed by Ubx in T3. Interestingly, changing the TAAT site to a TAAAT site was sufficient to bring an otherwise unresponsive enhancer of the vg gene from Apis under the control of Ubx in a Drosophila transgenic assay. Taken together, our results suggest an evolutionary mechanism by which critical wing patterning genes might have come under the regulation of Ubx in the Dipteran lineage.

3.
J Cell Sci ; 133(18)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32878938

RESUMEN

Hox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels.


Asunto(s)
Proteínas de Drosophila , Drosophila , Transporte Activo de Núcleo Celular , Animales , Autofagia/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Péptidos , Factores de Transcripción/metabolismo
4.
Dev Biol ; 454(2): 145-155, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31251896

RESUMEN

The specification and morphogenesis of an organ requires the coordinate deployment and integration of regulatory information, including sex specific information when the organ is sex specific. Only a few gene networks controlling size and pattern development have been deciphered, which limits the emergence of principles, general or not, underlying the organ-specifying gene networks. Here we elucidate the genetic and molecular network determining the control of size in the Drosophila abdominal A9 primordium, contributing to the female genitalia. This network requires axial regulatory information provided by the Hox protein Abdominal-BR (Abd-BR), the Hox cofactors Extradenticle (Exd) and Homothorax (Hth), and the sex specific transcription factor Doublesex Female (DsxF). These factors synergize to control size in the female A9 by the coordinate regulation of the Decapentaplegic (Dpp) growth pathway. Molecular dissection of the dpp regulatory region and in vivo protein interaction experiments suggest that Abd-BR, Exd, Hth and DsxF coordinately regulate a short dpp enhancer to repress dpp expression and restrict female A9 size. The same regulators can also suppress dpp expression in the A8, but this requires the absence of the Abd-BM isoform, which specifies A8. These results delineate the network controlling female A9 growth in Drosophila.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genitales Femeninos/crecimiento & desarrollo , Animales , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/crecimiento & desarrollo , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Genes de Insecto/genética , Proteínas de Homeodominio/metabolismo , Morfogénesis/genética , Proteínas Nucleares/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo
5.
Trends Genet ; 32(6): 334-347, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27066866

RESUMEN

Hox proteins are key regulatory transcription factors that act in different tissues of the embryo to provide specific spatial and temporal coordinates to each cell. These patterning functions often depend on the presence of the TALE-homeodomain class cofactors, which form cooperative DNA-binding complexes with all Hox proteins. How this family of cofactors contributes to the highly diverse and specific functions of Hox proteins in vivo remains an important unsolved question. We review here the most recent advances in understanding the molecular mechanisms underlying Hox-TALE function. In particular, we discuss the role of DNA shape, DNA-binding affinity, and protein-protein interaction flexibility in dictating Hox-TALE specificity. We propose several models to explain how these mechanisms are integrated with each other in the context of the many distinct functions that Hox and TALE factors carry out in vivo.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN/genética , Proteínas de Homeodominio/genética , Secuencia de Aminoácidos/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Unión Proteica , Mapas de Interacción de Proteínas/genética
6.
PLoS Genet ; 10(5): e1004303, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24786462

RESUMEN

Hox genes in species across the metazoa encode transcription factors (TFs) containing highly-conserved homeodomains that bind target DNA sequences to regulate batteries of developmental target genes. DNA-bound Hox proteins, together with other TF partners, induce an appropriate transcriptional response by RNA Polymerase II (PolII) and its associated general transcription factors. How the evolutionarily conserved Hox TFs interface with this general machinery to generate finely regulated transcriptional responses remains obscure. One major component of the PolII machinery, the Mediator (MED) transcription complex, is composed of roughly 30 protein subunits organized in modules that bridge the PolII enzyme to DNA-bound TFs. Here, we investigate the physical and functional interplay between Drosophila melanogaster Hox developmental TFs and MED complex proteins. We find that the Med19 subunit directly binds Hox homeodomains, in vitro and in vivo. Loss-of-function Med19 mutations act as dose-sensitive genetic modifiers that synergistically modulate Hox-directed developmental outcomes. Using clonal analysis, we identify a role for Med19 in Hox-dependent target gene activation. We identify a conserved, animal-specific motif that is required for Med19 homeodomain binding, and for activation of a specific Ultrabithorax target. These results provide the first direct molecular link between Hox homeodomain proteins and the general PolII machinery. They support a role for Med19 as a PolII holoenzyme-embedded "co-factor" that acts together with Hox proteins through their homeodomains in regulated developmental transcription.


Asunto(s)
Drosophila melanogaster/genética , Proteínas de Homeodominio/metabolismo , Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Animales , Sitios de Unión , Unión Proteica
7.
PLoS Genet ; 9(3): e1003307, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505377

RESUMEN

The emergence following gene duplication of a large repertoire of Hox paralogue proteins underlies the importance taken by Hox proteins in controlling animal body plans in development and evolution. Sequence divergence of paralogous proteins accounts for functional specialization, promoting axial morphological diversification in bilaterian animals. Yet functionally specialized paralogous Hox proteins also continue performing ancient common functions. In this study, we investigate how highly divergent Hox proteins perform an identical function. This was achieved by comparing in Drosophila the mode of limb suppression by the central (Ultrabithorax and AbdominalA) and posterior class (AbdominalB) Hox proteins. Results highlight that Hox-mediated limb suppression relies on distinct modes of DNA binding and a distinct use of TALE cofactors. Control of common functions by divergent Hox proteins, at least in the case studied, relies on evolving novel molecular properties. Thus, changes in protein sequences not only provide the driving force for functional specialization of Hox paralogue proteins, but also provide means to perform common ancient functions in distinct ways.


Asunto(s)
Proteínas de Unión al ADN , Drosophila melanogaster , Extremidades/crecimiento & desarrollo , Proteínas de Homeodominio , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Evolución Molecular , Duplicación de Gen/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/clasificación , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homología de Secuencia de Aminoácido
8.
PLoS Genet ; 9(2): e1003252, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408901

RESUMEN

Extradenticle (Exd) and Homothorax (Hth) function as positive transcriptional cofactors of Hox proteins, helping them to bind specifically their direct targets. The posterior Hox protein Abdominal-B (Abd-B) does not require Exd/Hth to bind DNA; and, during embryogenesis, Abd-B represses hth and exd transcription. Here we show that this repression is necessary for Abd-B function, as maintained Exd/Hth expression results in transformations similar to those observed in loss-of-function Abd-B mutants. We characterize the cis regulatory module directly regulated by Abd-B in the empty spiracles gene and show that the Exd/Hth complex interferes with Abd-B binding to this enhancer. Our results suggest that this novel Exd/Hth function does not require the complex to bind DNA and may be mediated by direct Exd/Hth binding to the Abd-B homeodomain. Thus, in some instances, the main positive cofactor complex for anterior Hox proteins can act as a negative factor for the posterior Hox protein Abd-B. This antagonistic interaction uncovers an alternative way in which MEIS and PBC cofactors can modulate Abd-B like posterior Hox genes during development.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Desarrollo Embrionario/genética , Proteínas de Homeodominio , Factores de Transcripción , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
PLoS Biol ; 10(6): e1001351, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22745600

RESUMEN

Hox transcription factors control a number of developmental processes with the help of the PBC class proteins. In vitro analyses have established that the formation of Hox/PBC complexes relies on a short conserved Hox protein motif called the hexapeptide (HX). This paradigm is at the basis of the vast majority of experimental approaches dedicated to the study of Hox protein function. Here we questioned the unique and general use of the HX for PBC recruitment by using the Bimolecular Fluorescence Complementation (BiFC) assay. This method allows analyzing Hox-PBC interactions in vivo and at a genome-wide scale. We found that the HX is dispensable for PBC recruitment in the majority of investigated Drosophila and mouse Hox proteins. We showed that HX-independent interaction modes are uncovered by the presence of Meis class cofactors, a property which was also observed with Hox proteins of the cnidarian sea anemone Nematostella vectensis. Finally, we revealed that paralog-specific motifs convey major PBC-recruiting functions in Drosophila Hox proteins. Altogether, our results highlight that flexibility in Hox-PBC interactions is an ancestral and evolutionary conserved character, which has strong implications for the understanding of Hox protein functions during normal development and pathologic processes.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Animales , Células COS , Embrión de Pollo , Chlorocebus aethiops , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/química , Ratones
10.
Dev Dyn ; 243(1): 16-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23794379

RESUMEN

BACKGROUND: Hox proteins are key developmental regulators involved in almost every embryonic tissue for specifying cell fates along longitudinal axes or during organ formation. It is thought that the panoply of Hox activities relies on interactions with tissue-, stage-, and/or cell-specific transcription factors. High-throughput approaches in yeast or cell culture systems have shown that Hox proteins bind to various types of nuclear and cytoplasmic components, illustrating their remarkable potential to influence many different cell regulatory processes. However, these approaches failed to identify a relevant number of context-specific transcriptional partners, suggesting that these interactions are hard to uncover in non-physiological conditions. Here we discuss this problematic. RESULTS: In this review, we present intrinsic Hox molecular signatures that are probably involved in multiple (yet specific) interactions with transcriptional partners. We also recapitulate the current knowledge on Hox cofactors, highlighting the difficulty to tracking context-specific cofactors through traditional large-scale approaches. CONCLUSION: We propose experimental approaches that will allow a better characterisation of interaction networks underlying Hox contextual activities in the next future.


Asunto(s)
Factores de Transcripción/metabolismo , Animales , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Genes Homeobox/genética , Genes Homeobox/fisiología , Humanos , Factores de Transcripción/genética
11.
Proc Natl Acad Sci U S A ; 108(6): 2276-81, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21262810

RESUMEN

Hox genes encode transcription factors widely used for diversifying animal body plans in development and evolution. To achieve functional specificity, Hox proteins associate with PBC class proteins, Pre-B cell leukemia homeobox (Pbx) in vertebrates, and Extradenticle (Exd) in Drosophila, and were thought to use a unique hexapeptide-dependent generic mode of interaction. Recent findings, however, revealed the existence of an alternative, UbdA-dependent paralog-specific interaction mode providing diversity in Hox-PBC interactions. In this study, we investigated the basis for the selection of one of these two Hox-PBC interaction modes. Using naturally occurring variations and mutations in the Drosophila Ultrabithorax protein, we found that the linker region, a short domain separating the hexapeptide from the homeodomain, promotes an interaction mediated by the UbdA domain in a context-dependent manner. While using a UbdA-dependent interaction for the repression of the limb-promoting gene Distalless, interaction with Exd during segment-identity specification still relies on the hexapeptide motif. We further show that distinctly assembled Hox-PBC complexes display subtle but distinct repressive activities. These findings identify Hox-PBC interaction as a template for subtle regulation of Hox protein activity that may have played a major role in the diversification of Hox protein function in development and evolution.


Asunto(s)
Proteínas de Drosophila/metabolismo , Evolución Molecular , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Homeodominio/genética , Estructura Terciaria de Proteína , Factores de Transcripción/genética
12.
PLoS Genet ; 7(10): e1002302, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22046139

RESUMEN

Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.


Asunto(s)
Tipificación del Cuerpo/genética , Sistema Nervioso Central/embriología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula/genética , Sistema Nervioso Central/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/química , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Mutación , Proteínas Nucleares/química , Estructura Terciaria de Proteína/genética , Factores de Transcripción/química , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
13.
Cells ; 13(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38607052

RESUMEN

Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein-protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Microscopía Fluorescente/métodos , Factores de Transcripción/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , ADN/metabolismo
14.
Bioessays ; 33(7): 499-507, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21544844

RESUMEN

In this review we present concepts that challenge a recently emerging paradigm explaining how similar Hox proteins perform different developmental functions across evolution, despite relatively limited sequence variability. This paradigm relates to the transcription factor, Fushi tarazu (Ftz), whose evolutionary plasticity has been shown to rely on the shuffling between two short protein recognition motifs. We discuss the Ftz paradigm and consider alternative interpretations to the evolutionary flexibility of this Hox protein. In particular, we propose that the protein environment might have played a critical role in the functional shuffling of Ftz during arthropod evolution.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Animales , Artrópodos/genética , Artrópodos/metabolismo , Evolución Molecular , Factores de Transcripción Fushi Tarazu/clasificación , Factores de Transcripción Fushi Tarazu/genética , Factores de Transcripción Fushi Tarazu/metabolismo , Proteínas de Homeodominio/clasificación , Proteínas de Homeodominio/genética , Proteínas de Insectos/clasificación , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Modelos Biológicos , Filogenia
15.
Wiley Interdiscip Rev RNA ; 14(2): e1752, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35899407

RESUMEN

Transcription factors (TFs) are present in all life forms and conserved across great evolutionary distances in eukaryotes. From yeast to complex multicellular organisms, they are pivotal players of cell fate decision by orchestrating gene expression at diverse molecular layers. Notably, TFs fine-tune gene expression by coordinating RNA fate at both the expression and splicing levels. They regulate alternative splicing, an essential mechanism for cell plasticity, allowing the production of many mRNA and protein isoforms in precise cell and tissue contexts. Despite this apparent role in splicing, how TFs integrate transcription and splicing to ultimately orchestrate diverse cell functions and cell fate decisions remains puzzling. We depict substantial studies in various model organisms underlining the key role of TFs in alternative splicing for promoting tissue-specific functions and cell fate. Furthermore, we emphasize recent advances describing the molecular link between the transcriptional and splicing activities of TFs. As TFs can bind both DNA and/or RNA to regulate transcription and splicing, we further discuss their flexibility and compatibility for DNA and RNA substrates. Finally, we propose several models integrating transcription and splicing activities of TFs in the coordination and diversification of cell and tissue identities. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Mechanisms.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Empalme del ARN , Factores de Transcripción , Transcripción Genética , Diferenciación Celular/genética , Empalme del ARN/genética , Factores de Transcripción/metabolismo , Linaje de la Célula/genética , Análisis Espacio-Temporal , ADN Polimerasa II/química , ADN Polimerasa II/metabolismo , ADN/metabolismo , ARN/metabolismo , Humanos , Animales
16.
Cells ; 12(1)2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36611993

RESUMEN

Biological pathways rely on the formation of intricate protein interaction networks called interactomes. Getting a comprehensive map of interactomes implies the development of tools that allow one to capture transient and low-affinity protein-protein interactions (PPIs) in live conditions. Here we presented an experimental strategy: the Cell-PCA (cell-based protein complementation assay), which was based on bimolecular fluorescence complementation (BiFC) for ORFeome-wide screening of proteins that interact with different bait proteins in the same live cell context, by combining high-throughput sequencing method. The specificity and sensitivity of the Cell-PCA was established by using a wild-type and a single-amino-acid-mutated HOXA9 protein, and the approach was subsequently applied to seven additional human HOX proteins. These proof-of-concept experiments revealed novel molecular properties of HOX interactomes and led to the identification of a novel cofactor of HOXB13 that promoted its proliferative activity in a cancer cell context. Taken together, our work demonstrated that the Cell-PCA was pertinent for revealing and, importantly, comparing the interactomes of different or highly related bait proteins in the same cell context.


Asunto(s)
Mapas de Interacción de Proteínas , Humanos , Microscopía Fluorescente/métodos
17.
BMC Biol ; 9: 5, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21276241

RESUMEN

BACKGROUND: Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC) technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. RESULTS: Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. CONCLUSION: Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Mapeo de Interacción de Proteínas/métodos , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Embrión no Mamífero , Femenino , Proteínas de Homeodominio/metabolismo , Microscopía Fluorescente/métodos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores de Transcripción/metabolismo
18.
J Dev Biol ; 10(3)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35997398

RESUMEN

In this Special Issue on "Hox genes in development: new paradigms", we present a compilation of articles and reviews tackling various aspects of the Hox biology field [...].

19.
Bioessays ; 31(5): 500-11, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19334006

RESUMEN

Hox proteins are part of the conserved superfamily of homeodomain-containing transcription factors and play fundamental roles in shaping animal body plans in development and evolution. However, molecular mechanisms underlying their diverse and specific biological functions remain largely enigmatic. Here, we have analyzed Hox sequences from the main evolutionary branches of the Bilateria group. We have found that four classes of Hox protein signatures exist, which together provide sufficient support to explain how different Hox proteins differ in their control and function. The homeodomain and its surrounding sequences accumulate nearly all signatures, constituting an extended module where most of the information distinguishing Hox proteins is concentrated. Only a small fraction of these signatures has been investigated at the functional level, but these show that approaches relying on Hox protein alterations still have a large potential for deciphering molecular mechanisms of Hox differential control.


Asunto(s)
Proteínas de Homeodominio/química , Proteínas de Homeodominio/fisiología , Proteínas Nucleares/química , Proteínas Nucleares/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Homología de Secuencia de Aminoácido
20.
Cells ; 10(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34831206

RESUMEN

It is recognized that a large proportion of eukaryotic RNAs and proteins is not produced from conventional genes but from short and alternative (alt) open reading frames (ORFs) that are not captured by gene prediction programs. Here we present an in silico prediction of altORFs by applying several selecting filters based on evolutionary conservation and annotations of previously characterized altORF peptides. Our work was performed in the Bithorax-complex (BX-C), which was one of the first genomic regions described to contain long non-coding RNAs in Drosophila. We showed that several altORFs could be predicted from coding and non-coding sequences of BX-C. In addition, the selected altORFs encode for proteins that contain several interesting molecular features, such as the presence of transmembrane helices or a general propensity to be rich in short interaction motifs. Of particular interest, one altORF encodes for a protein that contains a peptide sequence found in specific isoforms of two Drosophila Hox proteins. Our work thus suggests that several altORF proteins could be produced from a particular genomic region known for its critical role during Drosophila embryonic development. The molecular signatures of these altORF proteins further suggests that several of them could make numerous protein-protein interactions and be of functional importance in vivo.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Péptidos/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA