Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108798

RESUMEN

The SOX2 transcription factor is a key regulator of nervous system development, and its mutation in humans leads to a rare disease characterized by severe eye defects, cognitive defects, hearing defects, abnormalities of the CNS and motor control problems. SOX2 has an essential role in neural stem cell maintenance in specific regions of the brain, and it is one of the master genes required for the generation of induced pluripotent stem cells. Sox2 is expressed in sensory organs, and this review will illustrate how it regulates the differentiation of sensory cell types required for hearing, touching, tasting and smelling in vertebrates and, in particular, in mice.


Asunto(s)
Células-Madre Neurales , Factores de Transcripción SOXB1 , Animales , Ratones , Humanos , Factores de Transcripción SOXB1/metabolismo , Diferenciación Celular/genética , Células-Madre Neurales/metabolismo , Encéfalo/metabolismo , Vertebrados/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674677

RESUMEN

DNA sequence variants (single nucleotide polymorphisms or variants, SNPs/SNVs; copy number variants, CNVs) associated to neurodevelopmental disorders (NDD) and traits often map on putative transcriptional regulatory elements, including, in particular, enhancers. However, the genes controlled by these enhancers remain poorly defined. Traditionally, the activity of a given enhancer, and the effect of its possible alteration associated to the sequence variants, has been thought to influence the nearest gene promoter. However, the obtainment of genome-wide long-range interaction maps in neural cells chromatin challenged this view, showing that a given enhancer is very frequently not connected to the nearest promoter, but to a more distant one, skipping genes in between. In this Perspective, we review some recent papers, who generated long-range interaction maps (by HiC, RNApolII ChIA-PET, Capture-HiC, or PLACseq), and overlapped the identified long-range interacting DNA segments with DNA sequence variants associated to NDD (such as schizophrenia, bipolar disorder and autism) and traits (intelligence). This strategy allowed to attribute the function of enhancers, hosting the NDD-related sequence variants, to a connected gene promoter lying far away on the linear chromosome map. Some of these enhancer-connected genes had indeed been already identified as contributive to the diseases, by the identification of mutations within the gene's protein-coding regions (exons), validating the approach. Significantly, however, the connected genes also include many genes that were not previously found mutated in their exons, pointing to novel candidate contributors to NDD and traits. Thus, long-range interaction maps, in combination with DNA variants detected in association with NDD, can be used as "pointers" to identify novel candidate disease-relevant genes. Functional manipulation of the long-range interaction network involving enhancers and promoters by CRISPR-Cas9-based approaches is beginning to probe for the functional significance of the identified interactions, and the enhancers and the genes involved, improving our understanding of neural development and its pathology.


Asunto(s)
Cromatina , Trastornos del Neurodesarrollo , Humanos , Cromatina/genética , Elementos de Facilitación Genéticos , ADN , Regiones Promotoras Genéticas , Trastornos del Neurodesarrollo/genética , Estudio de Asociación del Genoma Completo
3.
Development ; 145(2)2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352015

RESUMEN

The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression.


Asunto(s)
Proteínas Aviares/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Morfogenéticas Óseas/metabolismo , Neurogénesis/fisiología , Mucosa Olfatoria/embriología , Mucosa Olfatoria/metabolismo , Proteínas Represoras/genética , Factores de Transcripción SOXB1/metabolismo , Animales , Apoptosis , Proteínas Aviares/deficiencia , Proteínas Aviares/genética , Secuencia de Bases , Sitios de Unión/genética , Proteína Morfogenética Ósea 4/metabolismo , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Embrión de Pollo , Femenino , Técnicas de Inactivación de Genes , Ratones , Ratones Noqueados , Neurogénesis/genética , Embarazo , Regiones Promotoras Genéticas , Factores de Transcripción SOXB1/deficiencia , Factores de Transcripción SOXB1/genética , Regulación hacia Arriba
4.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31540269

RESUMEN

The Sox2 transcription factor, encoded by a gene conserved in animal evolution, has become widely known because of its functional relevance for stem cells. In the developing nervous system, Sox2 is active in neural stem cells, and important for their self-renewal; differentiation to neurons and glia normally involves Sox2 downregulation. Recent evidence, however, identified specific types of fully differentiated neurons and glia that retain high Sox2 expression, and critically require Sox2 function, as revealed by functional studies in mouse and in other animals. Sox2 was found to control fundamental aspects of the biology of these cells, such as the development of correct neuronal connectivity. Sox2 downstream target genes identified within these cell types provide molecular mechanisms for cell-type-specific Sox2 neuronal and glial functions. SOX2 mutations in humans lead to a spectrum of nervous system defects, involving vision, movement control, and cognition; the identification of neurons and glia requiring Sox2 function, and the investigation of Sox2 roles and molecular targets within them, represents a novel perspective for the understanding of the pathogenesis of these defects.


Asunto(s)
Células-Madre Neurales/citología , Neuroglía/citología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Animales , Diferenciación Celular , Autorrenovación de las Células , Regulación hacia Abajo , Humanos , Ratones , Mutación , Células-Madre Neurales/metabolismo , Neurogénesis , Neuroglía/metabolismo , Transducción de Señal
5.
Glia ; 66(9): 1929-1946, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29732603

RESUMEN

Sox2 is a transcription factor active in the nervous system, within different cell types, ranging from radial glia neural stem cells to a few specific types of differentiated glia and neurons. Mutations in the human SOX2 transcription factor gene cause various central nervous system (CNS) abnormalities, involving hippocampus and eye defects, as well as ataxia. Conditional Sox2 mutation in mouse, with different Cre transgenes, previously recapitulated different essential features of the disease, such as hippocampus and eye defects. In the cerebellum, Sox2 is active from early embryogenesis in the neural progenitors of the cerebellar primordium; Sox2 expression is maintained, postnatally, within Bergmann glia (BG), a differentiated cell type essential for Purkinje neurons functionality and correct motor control. By performing Sox2 Cre-mediated ablation in the developing and postnatal mouse cerebellum, we reproduced ataxia features. Embryonic Sox2 deletion (with Wnt1Cre) leads to reduction of the cerebellar vermis, known to be commonly related to ataxia, preceded by deregulation of Otx2 and Gbx2, critical regulators of vermis development. Postnatally, BG is progressively disorganized, mislocalized, and reduced in mutants. Sox2 postnatal deletion, specifically induced in glia (with GLAST-CreERT2), reproduces the BG defect, and causes (milder) ataxic features. Our results define a role for Sox2 in cerebellar function and development, and identify a functional requirement for Sox2 within postnatal BG, of potential relevance for ataxia in mouse mutants, and in human patients.


Asunto(s)
Ataxia/metabolismo , Vermis Cerebeloso/crecimiento & desarrollo , Vermis Cerebeloso/metabolismo , Neuroglía/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Animales Recién Nacidos , Ataxia/patología , Células Cultivadas , Vermis Cerebeloso/patología , Regulación de la Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones Transgénicos , Mutación , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuroglía/patología , Factores de Transcripción Otx/metabolismo , Factores de Transcripción SOXB1/genética , Transmisión Sináptica/fisiología
6.
Development ; 140(6): 1250-61, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23444355

RESUMEN

The Sox2 transcription factor is active in stem/progenitor cells throughout the developing vertebrate central nervous system. However, its conditional deletion at E12.5 in mouse causes few brain developmental problems, with the exception of the postnatal loss of the hippocampal radial glia stem cells and the dentate gyrus. We deleted Sox2 at E9.5 in the telencephalon, using a Bf1-Cre transgene. We observed embryonic brain defects that were particularly severe in the ventral, as opposed to the dorsal, telencephalon. Important tissue loss, including the medial ganglionic eminence (MGE), was detected at E12.5, causing the subsequent impairment of MGE-derived neurons. The defect was preceded by loss of expression of the essential ventral determinants Nkx2.1 and Shh, and accompanied by ventral spread of dorsal markers. This phenotype is reminiscent of that of mice mutant for the transcription factor Nkx2.1 or for the Shh receptor Smo. Nkx2.1 is known to mediate the initial activation of ventral telencephalic Shh expression. A partial rescue of the normal phenotype at E14.5 was obtained by administration of a Shh agonist. Experiments in Medaka fish indicate that expression of Nkx2.1 is regulated by Sox2 in this species also. We propose that Sox2 contributes to Nkx2.1 expression in early mouse development, thus participating in the region-specific activation of Shh, thereby mediating ventral telencephalic patterning induction.


Asunto(s)
Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Proteínas Hedgehog/genética , Proteínas Nucleares/genética , Factores de Transcripción SOXB1/fisiología , Telencéfalo/embriología , Factores de Transcripción/genética , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Embarazo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Telencéfalo/metabolismo , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
7.
Cells ; 12(18)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759531

RESUMEN

Mutations in the transcription factor-coding gene SOX18, the growth factor-coding gene VEGFC and its receptor-coding gene VEGFR3/FLT4 cause primary lymphedema in humans. In mammals, SOX18, together with COUP-TFII/NR2F2, activates the expression of Prox1, a master regulator in lymphatic identity and development. Knockdown studies have also suggested an involvement of Sox18, Coup-tfII/Nr2f2, and Prox1 in zebrafish lymphatic development. Mutants in the corresponding genes initially failed to recapitulate the lymphatic defects observed in morphants. In this paper, we describe a novel zebrafish sox18 mutant allele, sa12315, which behaves as a null. The formation of the lymphatic thoracic duct is affected in sox18 homozygous mutants, but defects are milder in both zygotic and maternal-zygotic sox18 mutants than in sox18 morphants. Remarkably, in sox18 mutants, the expression of the closely related sox7 gene is elevated where lymphatic precursors arise. Sox7 could thus mask the absence of a functional Sox18 protein and account for the mild lymphatic phenotype in sox18 mutants, as shown in mice. Partial knockdown of vegfc exacerbates lymphatic defects in sox18 mutants, making them visible in heterozygotes. Our data thus reinforce the genetic interaction between Sox18 and Vegfc in lymphatic development, previously suggested by knockdown studies, and highlight the ability of Sox7 to compensate for Sox18 lymphatic dysfunction.


Asunto(s)
Vasos Linfáticos , Factores de Transcripción SOXF , Proteínas de Pez Cebra , Pez Cebra , Animales , Humanos , Ratones , Vasos Linfáticos/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
8.
Cells ; 11(10)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35626641

RESUMEN

SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.


Asunto(s)
Células-Madre Neurales , Neuroglía , Factores de Transcripción SOXB1/metabolismo , Animales , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción/metabolismo
9.
Open Biol ; 11(2): 200339, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622105

RESUMEN

The hippocampus is a brain area central for cognition. Mutations in the human SOX2 transcription factor cause neurodevelopmental defects, leading to intellectual disability and seizures, together with hippocampal dysplasia. We generated an allelic series of Sox2 conditional mutations in mouse, deleting Sox2 at different developmental stages. Late Sox2 deletion (from E11.5, via Nestin-Cre) affects only postnatal hippocampal development; earlier deletion (from E10.5, Emx1-Cre) significantly reduces the dentate gyrus (DG), and the earliest deletion (from E9.5, FoxG1-Cre) causes drastic abnormalities, with almost complete absence of the DG. We identify a set of functionally interconnected genes (Gli3, Wnt3a, Cxcr4, p73 and Tbr2), known to play essential roles in hippocampal embryogenesis, which are downregulated in early Sox2 mutants, and (Gli3 and Cxcr4) directly controlled by SOX2; their downregulation provides plausible molecular mechanisms contributing to the defect. Electrophysiological studies of the Emx1-Cre mouse model reveal altered excitatory transmission in CA1 and CA3 regions.


Asunto(s)
Giro Dentado/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción SOXB1/metabolismo , Potenciales de Acción , Animales , Línea Celular Tumoral , Giro Dentado/citología , Giro Dentado/embriología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Factores de Transcripción SOXB1/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Proteína Gli3 con Dedos de Zinc/metabolismo
10.
Brain Struct Funct ; 226(4): 1303-1322, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33661352

RESUMEN

The neocortex, the most recently evolved brain region in mammals, is characterized by its unique areal and laminar organization. Distinct cortical layers and areas can be identified by the presence of graded expression of transcription factors and molecular determinants defining neuronal identity. However, little is known about the expression of key master genes orchestrating human cortical development. In this study, we explored the expression dynamics of NR2F1 and SOX2, key cortical genes whose mutations in human patients cause severe neurodevelopmental syndromes. We focused on physiological conditions, spanning from mid-late gestational ages to adulthood in unaffected specimens, but also investigated gene expression in a pathological context, a developmental cortical malformation termed focal cortical dysplasia (FCD). We found that NR2F1 follows an antero-dorsallow to postero-ventralhigh gradient as in the murine cortex, suggesting high evolutionary conservation. While SOX2 is mainly expressed in neural progenitors next to the ventricular surface, NR2F1 is found in both mitotic progenitors and post-mitotic neurons at GW18. Interestingly, both proteins are highly co-expressed in basal radial glia progenitors of the outer sub-ventricular zone (OSVZ), a proliferative region known to contribute to cortical expansion and complexity in humans. Later on, SOX2 becomes largely restricted to astrocytes and oligodendrocytes although it is also detected in scattered mature interneurons. Differently, NR2F1 maintains its distinct neuronal expression during the whole process of cortical development. Notably, we report here high levels of NR2F1 in dysmorphic neurons and NR2F1 and SOX2 in balloon cells of surgical samples from patients with FCD, suggesting their potential use in the histopathological characterization of this dysplasia.


Asunto(s)
Factor de Transcripción COUP I/metabolismo , Factores de Transcripción SOXB1/metabolismo , Adulto , Animales , Humanos , Interneuronas/metabolismo , Ratones , Neocórtex/metabolismo , Neurogénesis , Neuronas/metabolismo , Factores de Transcripción SOXB1/genética
11.
iScience ; 15: 257-273, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31082736

RESUMEN

Visual system development involves the formation of neuronal projections connecting the retina to the thalamic dorso-lateral geniculate nucleus (dLGN) and the thalamus to the visual cerebral cortex. Patients carrying mutations in the SOX2 transcription factor gene present severe visual defects, thought to be linked to SOX2 functions in the retina. We show that Sox2 is strongly expressed in mouse postmitotic thalamic projection neurons. Cre-mediated deletion of Sox2 in these neurons causes reduction of the dLGN, abnormal distribution of retino-thalamic and thalamo-cortical projections, and secondary defects in cortical patterning. Reduced expression, in mutants, of Sox2 target genes encoding ephrin-A5 and the serotonin transport molecules SERT and vMAT2 (important for establishment of thalamic connectivity) likely provides a molecular contribution to these defects. These findings unveil thalamic SOX2 function as a novel regulator of visual system development and a plausible additional cause of brain-linked genetic blindness in humans.

12.
Cell Stem Cell ; 24(3): 462-476.e6, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849367

RESUMEN

The SOX2 transcription factor is critical for neural stem cell (NSC) maintenance and brain development. Through chromatin immunoprecipitation (ChIP) and chromatin interaction analysis (ChIA-PET), we determined genome-wide SOX2-bound regions and Pol II-mediated long-range chromatin interactions in brain-derived NSCs. SOX2-bound DNA was highly enriched in distal chromatin regions interacting with promoters and carrying epigenetic enhancer marks. Sox2 deletion caused widespread reduction of Pol II-mediated long-range interactions and decreased gene expression. Genes showing reduced expression in Sox2-deleted cells were significantly enriched in interactions between promoters and SOX2-bound distal enhancers. Expression of one such gene, Suppressor of Cytokine Signaling 3 (Socs3), rescued the self-renewal defect of Sox2-ablated NSCs. Our work identifies SOX2 as a major regulator of gene expression through connections to the enhancer network in NSCs. Through the definition of such a connectivity network, our study shows the way to the identification of genes and enhancers involved in NSC maintenance and neurodevelopmental disorders.


Asunto(s)
Cromatina/metabolismo , Células-Madre Neurales/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Células Cultivadas , Redes Reguladoras de Genes/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Factores de Transcripción SOXB1/deficiencia , Factores de Transcripción SOXB1/genética , Pez Cebra
13.
Dis Model Mech ; 6(5): 1246-59, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23720232

RESUMEN

Mutations in the human NOTCH3 gene cause CADASIL syndrome (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). CADASIL is an inherited small vessel disease characterized by diverse clinical manifestations including vasculopathy, neurodegeneration and dementia. Here we report two mutations in the zebrafish notch3 gene, one identified in a previous screen for mutations with reduced expression of myelin basic protein (mbp) and another caused by a retroviral insertion. Reduced mbp expression in notch3 mutant embryos is associated with fewer oligodendrocyte precursor cells (OPCs). Despite an early neurogenic phenotype, mbp expression recovered at later developmental stages and some notch3 homozygous mutants survived to adulthood. These mutants, as well as adult zebrafish carrying both mutant alleles together, displayed a striking stress-associated accumulation of blood in the head and fins. Histological analysis of mutant vessels revealed vasculopathy, including: an enlargement (dilation) of vessels in the telencephalon and fin, disorganization of the normal stereotyped arrangement of vessels in the fin, and an apparent loss of arterial morphological structure. Expression of hey1, a well-known transcriptional target of Notch signaling, was greatly reduced in notch3 mutant fins, suggesting that Notch3 acts via a canonical Notch signaling pathway to promote normal vessel structure. Ultrastructural analysis confirmed the presence of dilated vessels in notch3 mutant fins and revealed that the vessel walls of presumed arteries showed signs of deterioration. Gaps in the arterial wall and the presence of blood cells outside of vessels in mutants indicated that compromised vessel structure led to hemorrhage. In notch3 heterozygotes, we found elevated expression of both notch3 itself and target genes, indicating that specific alterations in gene expression due to partial loss of Notch3 function might contribute to the abnormalities observed in heterozygous larvae and adults. Our analysis of zebrafish notch3 mutants indicates that Notch3 regulates OPC development and mbp gene expression in larvae, and maintains vascular integrity in adults.


Asunto(s)
Vasos Sanguíneos/metabolismo , Receptores Notch/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Apoptosis , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/patología , Vasos Sanguíneos/fisiopatología , Tipificación del Cuerpo/genética , Hemorragia/metabolismo , Hemorragia/patología , Hemorragia/fisiopatología , Heterocigoto , Humanos , Larva/metabolismo , Mutación/genética , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Neurogénesis , Oligodendroglía/citología , Oligodendroglía/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Notch3 , Receptores Notch/genética , Telencéfalo/irrigación sanguínea , Telencéfalo/metabolismo , Telencéfalo/patología , Telencéfalo/fisiopatología , Vasodilatación , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
14.
Science ; 325(5946): 1402-5, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19745155

RESUMEN

The myelin sheath allows axons to conduct action potentials rapidly in the vertebrate nervous system. Axonal signals activate expression of specific transcription factors, including Oct6 and Krox20, that initiate myelination in Schwann cells. Elevation of cyclic adenosine monophosphate (cAMP) can mimic axonal contact in vitro, but the mechanisms that regulate cAMP levels in vivo are unknown. Using mutational analysis in zebrafish, we found that the G protein-coupled receptor Gpr126 is required autonomously in Schwann cells for myelination. In gpr126 mutants, Schwann cells failed to express oct6 and krox20 and were arrested at the promyelinating stage. Elevation of cAMP in gpr126 mutants, but not krox20 mutants, could restore myelination. We propose that Gpr126 drives the differentiation of promyelinating Schwann cells by elevating cAMP levels, thereby triggering Oct6 expression and myelination.


Asunto(s)
Vaina de Mielina/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Células de Schwann/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Axones/fisiología , Axones/ultraestructura , Diferenciación Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Sistema de la Línea Lateral/inervación , Datos de Secuencia Molecular , Mutación , Proteína Básica de Mielina/metabolismo , Neurregulina-1/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Receptores Acoplados a Proteínas G/genética , Células de Schwann/citología , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
15.
Development ; 135(3): 599-608, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18192286

RESUMEN

Mutations in Kif1-binding protein/KIAA1279 (KBP) cause the devastating neurological disorder Goldberg-Shprintzen syndrome (GSS) in humans. The cellular function of KBP and the basis of the symptoms of GSS, however, remain unclear. Here, we report the identification and characterization of a zebrafish kbp mutant. We show that kbp is required for axonal outgrowth and maintenance. In vivo time-lapse analysis of neuronal development shows that the speed of early axonal outgrowth is reduced in both the peripheral and central nervous systems in kbp mutants. Ultrastructural studies reveal that kbp mutants have disruption to axonal microtubules during outgrowth. These results together suggest that kbp is an important regulator of the microtubule dynamics that drive the forward propulsion of axons. At later stages, we observe that many affected axons degenerate. Ultrastructural analyses at these stages demonstrate mislocalization of axonal mitochondria and a reduction in axonal number in the peripheral, central and enteric nervous systems. We propose that kbp is an important regulator of axonal development and that axonal cytoskeletal defects underlie the nervous system defects in GSS.


Asunto(s)
Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Axones/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Axones/ultraestructura , Tipificación del Cuerpo , Proteínas Portadoras/genética , Citoesqueleto/ultraestructura , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Vaina de Mielina/ultraestructura , Vesículas Sinápticas/metabolismo , Síndrome , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
16.
Proc Natl Acad Sci U S A ; 103(13): 5143-8, 2006 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-16549779

RESUMEN

The development of vertebrate basal forebrain dopaminergic (DA) neurons requires the conserved zinc finger protein Too Few (Tof/Fezl) in zebrafish. However, how Tof/Fezl regulates the commitment and differentiation of these DA neurons is not known. Proneural genes encoding basic helix-loop-helix transcription factors regulate the development of multiple neuronal lineages, but their involvement in vertebrate DA neuron determination is unclear. Here we show that neurogenin 1 (ngn1), a vertebrate proneural gene related to the Drosophila atonal, is expressed in and required for specification of DA progenitor cells, and when overexpressed leads to supernumerary DA neurons in the forebrain of zebrafish. Overexpression of ngn1 is also sufficient to induce tyrosine hydroxylase expression in addition to the pan-neuronal marker Hu in nonneural ectoderm. We further show that Tof/Fezl is required to establish basal forebrain ngn1-expressing DA progenitor domains. These findings identify Ngn1 as a determinant of brain DA neurons and provide insights into how Tof/Fezl regulates the development of these clinically important neuronal types.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Portadoras/metabolismo , Dopamina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Prosencéfalo/citología , Prosencéfalo/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Forma de la Célula , Secuencia Conservada , Dopamina/biosíntesis , Ectodermo/citología , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Prosencéfalo/embriología , Células Madre/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Dedos de Zinc
17.
Development ; 132(4): 645-58, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15677724

RESUMEN

In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol-/- mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphenucleus and the trochlear motor nucleus are absent in mol-/- embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins.


Asunto(s)
Sistema Nervioso Central/embriología , Inducción Embrionaria/fisiología , Neuronas Motoras/citología , Oligodendroglía/citología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog , Neuronas Motoras/metabolismo , Mutación/genética , Oligodendroglía/metabolismo , Núcleos del Rafe/citología , Núcleos del Rafe/embriología , Núcleos del Rafe/metabolismo , Serotonina/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Nervio Troclear/citología , Nervio Troclear/embriología , Nervio Troclear/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
18.
Development ; 131(9): 2137-47, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15105373

RESUMEN

Connective-tissue growth factor (CTGF) is a member of the CCN family of secreted proteins. CCN family members contain four characteristic domains and exhibit multiple activities: they associate with the extracellular matrix, they can mediate cell adhesion, cell migration and chemotaxis, and they can modulate the activities of peptide growth factors. Many of the effects of CTGF are thought to be mediated by binding to integrins, whereas others may be because of its recently identified ability to interact with BMP4 and TGF beta. We demonstrate, using Xenopus embryos, that CTGF also regulates signalling through the Wnt pathway, in accord with its ability to bind to the Wnt co-receptor LDL receptor-related protein 6 (LRP6). This interaction is likely to occur through the C-terminal (CT) domain of CTGF, which is distinct from the BMP- and TGF beta-interacting domain. Our results define new activities of CTGF and add to the variety of routes through which cells regulate growth factor activity in development, disease and tissue homeostasis.


Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores de LDL/metabolismo , Transducción de Señal/fisiología , Proteínas de Pez Cebra , Secuencia de Aminoácidos , Animales , Factor de Crecimiento del Tejido Conjuntivo , Inducción Embrionaria , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Inmediatas-Precoces/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Sustancias Macromoleculares , Datos de Secuencia Molecular , Morfogénesis/fisiología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Proteínas Proto-Oncogénicas/genética , Receptores de LDL/genética , Alineación de Secuencia , Proteínas Wnt , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología
19.
Development ; 130(18): 4295-305, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12900447

RESUMEN

We have isolated a novel secreted molecule, Wise, by a functional screen for activities that alter the anteroposterior character of neuralised Xenopus animal caps. Wise encodes a secreted protein capable of inducing posterior neural markers at a distance. Phenotypes arising from ectopic expression or depletion of Wise resemble those obtained when Wnt signalling is altered. In animal cap assays, posterior neural markers can be induced by Wnt family members, and induction of these markers by Wise requires components of the canonical Wnt pathway. This indicates that in this context Wise activates the Wnt signalling cascade by mimicking some of the effects of Wnt ligands. Activation of the pathway was further confirmed by nuclear accumulation of beta-catenin driven by Wise. By contrast, in an assay for secondary axis induction, extracellularly Wise antagonises the axis-inducing ability of Wnt8. Thus, Wise can activate or inhibit Wnt signalling in a context-dependent manner. The Wise protein physically interacts with the Wnt co-receptor, lipoprotein receptor-related protein 6 (LRP6), and is able to compete with Wnt8 for binding to LRP6. These activities of Wise provide a new mechanism for integrating inputs through the Wnt coreceptor complex to modulate the balance of Wnt signalling.


Asunto(s)
Inducción Embrionaria/fisiología , Morfogénesis , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Proteínas de Pez Cebra , Activinas/metabolismo , Secuencia de Aminoácidos , Animales , Biomarcadores , Proteínas Portadoras , Polaridad Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Hibridación in Situ , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/metabolismo , Fenotipo , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas/genética , Receptores de LDL/metabolismo , Alineación de Secuencia , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Wnt , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo , beta Catenina
20.
Development ; 129(7): 1633-44, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11923200

RESUMEN

The appropriate control of proliferation of neural precursors has fundamental implications for the development of the central nervous system and for cell homeostasis/replacement within specific brain regions throughout adulthood. The role of genetic determinants in this process is largely unknown. We report the expression of the homeobox transcription factor Emx2 within the periventricular region of the adult telencephalon. This neurogenetic area displays a large number of multipotent stem cells. Adult neural stem cells isolated from this region do express Emx2 and down-regulate it significantly upon differentiation into neurons and glia. Abolishing or, increasing Emx2 expression in adult neural stem cells greatly enhances or reduces their rate of proliferation, respectively. We determined that altering the expression of Emx2 affects neither the cell cycle length of adult neural stem cells nor their ability to generate neurons and glia. Rather, when Emx2 expression is abolished, the frequency of symmetric divisions that generate two stem cells increases, whereas it decreases when Emx2 expression is enhanced.


Asunto(s)
Sistema Nervioso Central/citología , Proteínas de Homeodominio/genética , Neuronas/citología , Células Madre/citología , Factores de Transcripción/genética , Animales , División Celular/genética , Células Cultivadas , Regulación de la Expresión Génica , Genes Homeobox , Hibridación in Situ , Ratones , Ratones Transgénicos , Modelos Neurológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA