Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pain ; 15: 1744806919849802, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31041876

RESUMEN

Diabetes mellitus is a global challenge with many diverse health sequelae, of which diabetic peripheral neuropathy is one of the most common. A substantial number of patients with diabetic peripheral neuropathy develop chronic pain, but the genetic and epigenetic factors that predispose diabetic peripheral neuropathy patients to develop neuropathic pain are poorly understood. Recent targeted genetic studies have identified mutations in α-subunits of voltage-gated sodium channels (Navs) in patients with painful diabetic peripheral neuropathy. Mutations in proteins that regulate trafficking or functional properties of Navs could expand the spectrum of patients with Nav-related peripheral neuropathies. The auxiliary sodium channel ß-subunits (ß1-4) have been reported to increase current density, alter inactivation kinetics, and modulate subcellular localization of Nav. Mutations in ß-subunits have been associated with several diseases, including epilepsy, cancer, and diseases of the cardiac conducting system. However, mutations in ß-subunits have never been shown previously to contribute to neuropathic pain. We report here a patient with painful diabetic peripheral neuropathy and negative genetic screening for mutations in SCN9A, SCN10A, and SCN11A-genes encoding sodium channel α-subunit that have been previously linked to the development of neuropathic pain. Genetic analysis revealed an aspartic acid to asparagine mutation, D109N, in the ß2-subunit. Functional analysis using current-clamp revealed that the ß2-D109N rendered dorsal root ganglion neurons hyperexcitable, especially in response to repetitive stimulation. Underlying the hyperexcitability induced by the ß2-subunit mutation, as evidenced by voltage-clamp analysis, we found a depolarizing shift in the voltage dependence of Nav1.7 fast inactivation and reduced use-dependent inhibition of the Nav1.7 channel.


Asunto(s)
Neuropatías Diabéticas/genética , Mutación con Ganancia de Función/genética , Neuralgia/genética , Subunidades beta de Canales de Sodio Activados por Voltaje/genética , Potenciales de Acción , Neuropatías Diabéticas/complicaciones , Neuropatías Diabéticas/fisiopatología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Células HEK293 , Humanos , Activación del Canal Iónico , Neuralgia/complicaciones , Neuralgia/fisiopatología , Sistemas de Lectura Abierta/genética , Dominios Proteicos , Tetrodotoxina/farmacología , Subunidades beta de Canales de Sodio Activados por Voltaje/química , Subunidades beta de Canales de Sodio Activados por Voltaje/metabolismo
2.
Mol Pain ; 122016.
Artículo en Inglés | MEDLINE | ID: mdl-27821467

RESUMEN

Small fiber neuropathy is a painful sensory nervous system disorder characterized by damage to unmyelinated C- and thinly myelinated Aδ- nerve fibers, clinically manifested by burning pain in the distal extremities and dysautonomia. The clinical onset in adulthood suggests a time-dependent process. The mechanisms that underlie nerve fiber injury in small fiber neuropathy are incompletely understood, although roles for energetic stress have been suggested. In the present study, we report time-dependent degeneration of neurites from dorsal root ganglia neurons in culture expressing small fiber neuropathy-associated G856D mutant Nav1.7 channels and demonstrate a time-dependent increase in intracellular calcium levels [Ca2+]i and reactive oxygen species, together with a decrease in ATP levels. Together with a previous clinical report of burning pain in the feet and hands associated with reduced levels of Na+/K+-ATPase in humans with high altitude sickness, the present results link energetic stress and reactive oxygen species production with the development of a painful neuropathy that preferentially affects small-diameter axons.


Asunto(s)
Adenosina Trifosfato/metabolismo , Axones/patología , Calcio/metabolismo , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Degeneración Nerviosa/metabolismo , Neuronas/citología , Animales , Células Cultivadas , Ganglios Espinales/citología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Degeneración Nerviosa/genética , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Transfección , Proteína Fluorescente Roja
3.
Mol Pain ; 11: 26, 2015 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-25957174

RESUMEN

BACKGROUND: The skin is a morphologically complex organ that serves multiple complementary functions, including an important role in thermoregulation, which is mediated by a rich vasculature that is innervated by sympathetic and sensory endings. Two autosomal dominant disorders characterized by episodes of severe pain, inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD) have been directly linked to mutations that enhance the function of sodium channel Nav1.7. Pain attacks are accompanied by reddening of the skin in both disorders. Nav1.7 is known to be expressed at relatively high levels within both dorsal root ganglion (DRG) and sympathetic ganglion neurons, and mutations that enhance the activity of Nav1.7 have been shown to have profound effects on the excitability of both cell-types, suggesting that dysfunction of sympathetic and/or sensory fibers, which release vasoactive peptides at skin vasculature, may contribute to skin reddening in IEM and PEPD. RESULTS: In the present study, we demonstrate that smooth muscle cells of cutaneous arterioles and arteriole-venule shunts (AVS) in the skin express sodium channel Nav1.7. Moreover, Nav1.7 is expressed by endothelial cells lining the arterioles and AVS and by sensory and sympathetic fibers innervating these vascular elements. CONCLUSIONS: These observations suggest that the activity of mutant Nav1.7 channels in smooth muscle cells of skin vasculature and innervating sensory and sympathetic fibers contribute to the skin reddening and/or pain in IEM and PEPD.


Asunto(s)
Axones/metabolismo , Endotelio/metabolismo , Células Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Piel/inervación , Piel/metabolismo , Eritromelalgia/genética , Ganglios Espinales/metabolismo , Humanos , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA