Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(5): 1014-1031.e13, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32017898

RESUMEN

The La-related protein 7 (LARP7) forms a complex with the nuclear 7SK RNA to regulate RNA polymerase II transcription. It has been implicated in cancer and the Alazami syndrome, a severe developmental disorder. Here, we report a so far unknown role of this protein in RNA modification. We show that LARP7 physically connects the spliceosomal U6 small nuclear RNA (snRNA) with a distinct subset of box C/D small nucleolar RNAs (snoRNAs) guiding U6 2'-O-methylation. Consistently, these modifications are severely compromised in the absence of LARP7. Although general splicing remains largely unaffected, transcriptome-wide analysis revealed perturbations in alternative splicing in LARP7-depleted cells. Importantly, we identified defects in 2'-O-methylation of the U6 snRNA in Alazami syndrome siblings carrying a LARP7 mutation. Our data identify LARP7 as a bridging factor for snoRNA-guided modification of the U6 snRNA and suggest that alterations in splicing fidelity contribute to the etiology of the Alazami syndrome.


Asunto(s)
Empalme Alternativo , Discapacidades del Desarrollo/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas/metabolismo , Empalmosomas/metabolismo , Sitios de Unión , Línea Celular Tumoral , Niño , Preescolar , Secuencia Conservada , Discapacidades del Desarrollo/genética , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Masculino , Metilación , Persona de Mediana Edad , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Nuclear Pequeño/genética , Ribonucleoproteínas/genética , Empalmosomas/genética
2.
Proc Natl Acad Sci U S A ; 117(1): 346-354, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871208

RESUMEN

Tryptophan synthase (TS) is a heterotetrameric αßßα complex. It is characterized by the channeling of the reaction intermediate indole and the mutual activation of the α-subunit TrpA and the ß-subunit TrpB via a complex allosteric network. We have analyzed this allosteric network by means of ancestral sequence reconstruction (ASR), which is an in silico method to resurrect extinct ancestors of modern proteins. Previously, the sequences of TrpA and TrpB from the last bacterial common ancestor (LBCA) have been computed by means of ASR and characterized. LBCA-TS is similar to modern TS by forming a αßßα complex with indole channeling taking place. However, LBCA-TrpA allosterically decreases the activity of LBCA-TrpB, whereas, for example, the modern ncTrpA from Neptuniibacter caesariensis allosterically increases the activity of ncTrpB. To identify amino acid residues that are responsible for this inversion of the allosteric effect, all 6 evolutionary TrpA and TrpB intermediates that stepwise link LBCA-TS with ncTS were characterized. Remarkably, the switching from TrpB inhibition to TrpB activation by TrpA occurred between 2 successive TS intermediates. Sequence comparison of these 2 intermediates and iterative rounds of site-directed mutagenesis allowed us to identify 4 of 413 residues from TrpB that are crucial for its allosteric activation by TrpA. The effect of our mutational studies was rationalized by a community analysis based on molecular dynamics simulations. Our findings demonstrate that ancestral sequence reconstruction can efficiently identify residues contributing to allosteric signal propagation in multienzyme complexes.


Asunto(s)
Proteínas Bacterianas/genética , Biología Computacional , Extinción Biológica , Subunidades de Proteína/genética , Triptófano Sintasa/genética , Regulación Alostérica/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Filogenia , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Triptófano/biosíntesis , Triptófano Sintasa/química , Triptófano Sintasa/metabolismo
3.
PLoS Comput Biol ; 17(1): e1008568, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465067

RESUMEN

Computational protein design has the ambitious goal of crafting novel proteins that address challenges in biology and medicine. To overcome these challenges, the computational protein modeling suite Rosetta has been tailored to address various protein design tasks. Recently, statistical methods have been developed that identify correlated mutations between residues in a multiple sequence alignment of homologous proteins. These subtle inter-dependencies in the occupancy of residue positions throughout evolution are crucial for protein function, but we found that three current Rosetta design approaches fail to recover these co-evolutionary couplings. Thus, we developed the Rosetta method ResCue (residue-coupling enhanced) that leverages co-evolutionary information to favor sequences which recapitulate correlated mutations, as observed in nature. To assess the protocols via recapitulation designs, we compiled a benchmark of ten proteins each represented by two, structurally diverse states. We could demonstrate that ResCue designed sequences with an average sequence recovery rate of 70%, whereas three other protocols reached not more than 50%, on average. Our approach had higher recovery rates also for functionally important residues, which were studied in detail. This improvement has only a minor negative effect on the fitness of the designed sequences as assessed by Rosetta energy. In conclusion, our findings support the idea that informing protocols with co-evolutionary signals helps to design stable and native-like proteins that are compatible with the different conformational states required for a complex function.


Asunto(s)
Biología Computacional/métodos , Evolución Molecular , Conformación Proteica , Proteínas , Alineación de Secuencia/métodos , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Aminoácidos/fisiología , Secuencia Conservada , Modelos Moleculares , Dominios Proteicos/fisiología , Proteínas/química , Proteínas/metabolismo , Proteínas/fisiología , Sinorhizobium meliloti , Termodinámica
4.
Genes Dev ; 28(7): 749-64, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24696456

RESUMEN

The Drosophila protein brain tumor (Brat) forms a complex with Pumilio (Pum) and Nanos (Nos) to repress hunchback (hb) mRNA translation at the posterior pole during early embryonic development. It is currently thought that complex formation is initiated by Pum, which directly binds the hb mRNA and subsequently recruits Nos and Brat. Here we report that, in addition to Pum, Brat also directly interacts with the hb mRNA. We identify Brat-binding sites distinct from the Pum consensus motif and show that RNA binding and translational repression by Brat do not require Pum, suggesting so far unrecognized Pum-independent Brat functions. Using various biochemical and biophysical methods, we also demonstrate that the NHL (NCL-1, HT2A, and LIN-41) domain of Brat, a domain previously believed to mediate protein-protein interactions, is a novel, sequence-specific ssRNA-binding domain. The Brat-NHL domain folds into a six-bladed ß propeller, and we identify its positively charged top surface as the RNA-binding site. Brat belongs to the functional diverse TRIM (tripartite motif)-NHL protein family. Using structural homology modeling, we predict that the NHL domains of all TRIM-NHL proteins have the potential to bind RNA, indicating that Brat is part of a conserved family of RNA-binding proteins.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/química , Modelos Moleculares , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/clasificación , Drosophila melanogaster/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Mutación , Filogenia , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética
5.
Proteins ; 89(9): 1167-1179, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33957009

RESUMEN

A comparison of protein backbones makes clear that not more than approximately 1400 different folds exist, each specifying the three-dimensional topology of a protein domain. Large proteins are composed of specific domain combinations and many domains can accommodate different functions. These findings confirm that the reuse of domains is key for the evolution of multi-domain proteins. If reuse was also the driving force for domain evolution, ancestral fragments of sub-domain size exist that are shared between domains possessing significantly different topologies. For the fully automated detection of putatively ancestral motifs, we developed the algorithm Fragstatt that compares proteins pairwise to identify fragments, that is, instantiations of the same motif. To reach maximal sensitivity, Fragstatt compares sequences by means of cascaded alignments of profile Hidden Markov Models. If the fragment sequences are sufficiently similar, the program determines and scores the structural concordance of the fragments. By analyzing a comprehensive set of proteins from the CATH database, Fragstatt identified 12 532 partially overlapping and structurally similar motifs that clustered to 134 unique motifs. The dissemination of these motifs is limited: We found only two domain topologies that contain two different motifs and generally, these motifs occur in not more than 18% of the CATH topologies. Interestingly, motifs are enriched in topologies that are considered ancestral. Thus, our findings suggest that the reuse of sub-domain sized fragments was relevant in early phases of protein evolution and became less important later on.


Asunto(s)
Algoritmos , Aminoácidos/química , Proteínas/química , Programas Informáticos , Secuencias de Aminoácidos , Bases de Datos de Proteínas , Evolución Molecular , Historia del Siglo XXI , Historia Antigua , Cadenas de Markov , Modelos Moleculares , Origen de la Vida , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Proteínas/historia
6.
Chemistry ; 27(7): 2439-2451, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33078454

RESUMEN

Light regulation of drug molecules has gained growing interest in biochemical and pharmacological research in recent years. In addition, a serious need for novel molecular targets of antibiotics has emerged presently. Herein, the development of a photocontrollable, azobenzene-based antibiotic precursor towards tryptophan synthase (TS), an essential metabolic multienzyme complex in bacteria, is presented. The compound exhibited moderately strong inhibition of TS in its E configuration and five times lower inhibition strength in its Z configuration. A combination of biochemical, crystallographic, and computational analyses was used to characterize the inhibition mode of this compound. Remarkably, binding of the inhibitor to a hitherto-unconsidered cavity results in an unproductive conformation of TS leading to noncompetitive inhibition of tryptophan production. In conclusion, we created a promising lead compound for combatting bacterial diseases, which targets an essential metabolic enzyme, and whose inhibition strength can be controlled with light.


Asunto(s)
Compuestos Azo/farmacología , Inhibidores Enzimáticos/farmacología , Triptófano Sintasa/antagonistas & inhibidores , Inhibidores Enzimáticos/efectos de la radiación
7.
EMBO Rep ; 20(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30622217

RESUMEN

Several long non-coding RNAs (lncRNAs) act as regulators of cellular homeostasis; however, few of these molecules were functionally characterized in a mature human tissue environment. Here, we report that the lncRNA LINC00941 is a crucial regulator of human epidermal homeostasis. LINC00941 is enriched in progenitor keratinocytes and acts as a repressor of keratinocyte differentiation. Furthermore, LINC00941 represses SPRR5, a previously uncharacterized molecule, which functions as an essential positive regulator of keratinocyte differentiation. Interestingly, 54.8% of genes repressed in SPRR5-deficient epidermal tissue are induced in LINC00941-depleted organotypic epidermis, suggesting a common mode of action for both molecules.


Asunto(s)
Proteínas Ricas en Prolina del Estrato Córneo/genética , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Homeostasis , ARN Largo no Codificante/genética , Diferenciación Celular/genética , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Técnicas de Inactivación de Genes , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Transcripción Genética
8.
Nucleic Acids Res ; 47(3): 1239-1254, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30496478

RESUMEN

Packaging of DNA into chromatin regulates DNA accessibility and consequently all DNA-dependent processes. The nucleosome is the basic packaging unit of DNA forming arrays that are suggested, by biochemical studies, to fold hierarchically into ordered higher-order structures of chromatin. This organization has been recently questioned using microscopy techniques, proposing an irregular structure. To address the principles of chromatin organization, we applied an in situ differential MNase-seq strategy and analyzed in silico the results of complete and partial digestions of human chromatin. We investigated whether different levels of chromatin packaging exist in the cell. We assessed the accessibility of chromatin within distinct domains of kb to Mb genomic regions, performed statistical analyses and computer modelling. We found no difference in MNase accessibility, suggesting no difference in fiber folding between domains of euchromatin and heterochromatin or between other sequence and epigenomic features of chromatin. Thus, our data suggests the absence of differentially organized domains of higher-order structures of chromatin. Moreover, we identified only local structural changes, with individual hyper-accessible nucleosomes surrounding regulatory elements, such as enhancers and transcription start sites. The regulatory sites per se are occupied with structurally altered nucleosomes, exhibiting increased MNase sensitivity. Our findings provide biochemical evidence that supports an irregular model of large-scale chromatin organization.


Asunto(s)
Cromatina/química , Empaquetamiento del ADN , Nucleasa Microcócica , Composición de Base , Núcleo Celular/genética , Simulación por Computador , ADN/química , Células HeLa , Humanos , Nucleosomas , Análisis de Secuencia de ADN
9.
BMC Bioinformatics ; 21(1): 5, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900122

RESUMEN

BACKGROUND: The order of genes in bacterial genomes is not random; for example, the products of genes belonging to an operon work together in the same pathway. The cotranslational assembly of protein complexes is deemed to conserve genomic neighborhoods even stronger than a common function. This is why a conserved genomic neighborhood can be utilized to predict, whether gene products form protein complexes. RESULTS: We were interested to assess the performance of a neighborhood-based classifier that analyzes a large number of genomes. Thus, we determined for the genes encoding the subunits of 494 experimentally verified hetero-dimers their local genomic context. In order to generate phylogenetically comprehensive genomic neighborhoods, we utilized the tools offered by the Enzyme Function Initiative. For each subunit, a sequence similarity network was generated and the corresponding genome neighborhood network was analyzed to deduce the most frequent gene product. This was predicted as interaction partner, if its abundance exceeded a threshold, which was the frequency giving rise to the maximal Matthews correlation coefficient. For the threshold of 16%, the true positive rate was 45%, the false positive rate 0.06%, and the precision 55%. For approximately 20% of the subunits, the interaction partner was not found in a neighborhood of ± 10 genes. CONCLUSIONS: Our phylogenetically comprehensive analysis confirmed that complex formation is a strong evolutionary factor that conserves genome neighborhoods. On the other hand, for 55% of the cases analyzed here, classification failed. Either, the interaction partner was not present in a ± 10 gene window or was not the most frequent gene product.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Genoma Bacteriano , Bacterias/clasificación , Proteínas Bacterianas/metabolismo , Genómica , Operón , Filogenia
10.
J Biol Chem ; 294(9): 3294-3310, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30647132

RESUMEN

The Snf2 proteins, comprising 53 different enzymes in humans, belong to the SF2 family. Many Snf2 enzymes possess chromatin-remodeling activity, requiring a functional ATPase domain consisting of conserved motifs named Q and I-VII. These motifs form two recA-like domains, creating an ATP-binding pocket. Little is known about the function of the conserved motifs in chromatin-remodeling enzymes. Here, we characterized the function of the Q and I (Walker I) motifs in hBRG1 (SMARCA4). The motifs are in close proximity to the bound ATP, suggesting a role in nucleotide binding and/or hydrolysis. Unexpectedly, when substituting the conserved residues Gln758 (Q motif) or Lys785 (I motif) of both motifs, all variants still bound ATP and exhibited basal ATPase activity similar to that of wildtype BRG1 (wtBRG1). However, all mutants lost the nucleosome-dependent stimulation of the ATPase domain. Their chromatin-remodeling rates were impaired accordingly, but nucleosome binding was retained and still comparable with that of wtBRG1. Interestingly, a cancer-relevant substitution, L754F (Q motif), displayed defects similar to the Gln758 variant(s), arguing for a comparable loss of function. Because we excluded a mutual interference of ATP and nucleosome binding, we postulate that both motifs stimulate the ATPase and chromatin-remodeling activities upon binding of BRG1 to nucleosomes, probably via allosteric mechanisms. Furthermore, mutations of both motifs similarly affect the enzymatic functionality of BRG1 in vitro and in living cells. Of note, in BRG1-deficient H1299 cells, exogenously expressed wtBRG1, but not BRG1 Q758A and BRG1 K785R, exhibited a tumor suppressor-like function.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , ADN Helicasas/genética , Humanos , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Nucleosomas/metabolismo , Factores de Transcripción/genética
11.
Proc Natl Acad Sci U S A ; 114(40): E8333-E8342, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923934

RESUMEN

Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein-protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein-protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein-protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein-protein interactions.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Evolución Biológica , Dominios y Motivos de Interacción de Proteínas , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bases de Datos de Proteínas , Modelos Moleculares , Unión Proteica , Conformación Proteica
12.
Biochemistry ; 58(22): 2584-2588, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31117390

RESUMEN

The members of the glutamine amidotransferase (GATase) family catalyze the incorporation of ammonia within numerous metabolic pathways and can be categorized in two classes. Here, we concentrated on class I GATases, which are heteromeric enzyme complexes consisting of synthase subunits and glutaminase subunits with a catalytic Cys-His-Glu triad. Glutamine hydrolysis at the glutaminase subunit is (i) dependent on the formation of tight synthase-glutaminase complexes and (ii) allosterically coupled to the presence of the substrate at the synthase subunit. The structural basis of both complex formation and allostery is poorly understood. However, previous work on 4-amino-4-deoxychorismate synthase and imidazole glycerol phosphate synthase suggested that a conserved aspartate residue in their synthase subunits, which is located at the subunit interface close to the glutaminase catalytic triad, might be important for both features. We performed a computational screen of class I GATases from the Protein Data Bank and identified conserved and similarly located aspartate residues. We then generated alanine and glutamate mutants of these residues and characterized them by analytical gel filtration and steady-state enzyme kinetics. The results confirmed the important role of the wild-type aspartate residues for the formation of stable synthase-glutaminase complexes (in three of four cases) and the stimulation of glutaminase activity in the analyzed GATases (in all four cases). We present a model for rationalizing the dual role of the conserved aspartate residue toward a unifying regulation mechanism in the entire class I GATase family.


Asunto(s)
Ácido Aspártico/química , Glutaminasa/química , Complejos Multienzimáticos/química , Regulación Alostérica/genética , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/química , Glutaminasa/genética , Cinética , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida , Mutación , Multimerización de Proteína/genética
13.
Proteins ; 87(10): 815-825, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31134642

RESUMEN

It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic "hot spot" amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Bacterias/enzimología , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Antranilato Fosforribosiltransferasa/genética , Dominio Catalítico , Biología Computacional , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Multimerización de Proteína
14.
Biol Chem ; 400(3): 367-381, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30763032

RESUMEN

For evolutionary studies, but also for protein engineering, ancestral sequence reconstruction (ASR) has become an indispensable tool. The first step of every ASR protocol is the preparation of a representative sequence set containing at most a few hundred recent homologs whose composition determines decisively the outcome of a reconstruction. A common approach for sequence selection consists of several rounds of manual recompilation that is driven by embedded phylogenetic analyses of the varied sequence sets. For ASR of a geranylgeranylglyceryl phosphate synthase, we additionally utilized FitSS4ASR, which replaces this time-consuming protocol with an efficient and more rational approach. FitSS4ASR applies orthogonal filters to a set of homologs to eliminate outlier sequences and those bearing only a weak phylogenetic signal. To demonstrate the usefulness of FitSS4ASR, we determined experimentally the oligomerization state of eight predecessors, which is a delicate and taxon-specific property. Corresponding ancestors deduced in a manual approach and by means of FitSS4ASR had the same dimeric or hexameric conformation; this concordance testifies to the efficiency of FitSS4ASR for sequence selection. FitSS4ASR-based results of two other ASR experiments were added to the Supporting Information. Program and documentation are available at https://gitlab.bioinf.ur.de/hek61586/FitSS4ASR.


Asunto(s)
Transferasas Alquil y Aril/genética , Programas Informáticos , Transferasas Alquil y Aril/aislamiento & purificación , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Evolución Molecular , Filogenia , Ingeniería de Proteínas , Factores de Tiempo
15.
J Exp Biol ; 222(Pt 10)2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31019064

RESUMEN

Insect pheromones are often derived from fatty acid metabolism. Fatty acid desaturases, enzymes introducing double bonds into fatty acids, are crucial for the biosynthesis of these chemical signals. Δ12-desaturases catalyse the biosynthesis of linoleic acid by introducing a second double bond into oleic acid, but have been identified in only a few animal species. Here, we report the functional characterisation of two Δ12-desaturases, Nvit_D12a and Nvit_D12b, from the parasitic wasp Nasonia vitripennis. We demonstrate that Nvit_D12a is expressed in the rectal vesicle of males where they produce a linoleic acid-derived sex pheromone to attract virgin females. 13C-labelling experiments with Urolepis rufipes, a closely related species belonging to the 'Nasonia group', revealed that females, but not males, are able to synthesise linoleic acid. U. rufipes males produce an isoprenoid sex pheromone in the same gland and do not depend on linoleic acid for pheromone production. This suggests that Δ12-desaturases are common in the 'Nasonia group', but acquired a specialised function in chemical communication of those species that use linoleic acid as a pheromone precursor. Phylogenetic analysis suggests that insect Δ12-desaturases have evolved repeatedly from Δ9-desaturases in different insect taxa. Hence, insects have developed a way to produce linoleic acid independent of the omega desaturase subfamily which harbours all of the eukaryotic Δ12-desaturases known so far.


Asunto(s)
Ácido Graso Desaturasas/genética , Proteínas de Insectos/genética , Ácido Linoleico/metabolismo , Atractivos Sexuales/biosíntesis , Avispas/metabolismo , Animales , Ácido Graso Desaturasas/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Masculino
16.
PLoS Genet ; 12(1): e1005836, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26824644

RESUMEN

Modern enzymes are highly optimized biocatalysts that process their substrates with extreme efficiency. Many enzymes catalyze more than one reaction; however, the persistence of such ambiguities, their consequences and evolutionary causes are largely unknown. As a paradigmatic case, we study the history of bi-functionality for a time span of approximately two billion years for the sugar isomerase HisA from histidine biosynthesis. To look back in time, we computationally reconstructed and experimentally characterized three HisA predecessors. We show that these ancient enzymes catalyze not only the HisA reaction but also the isomerization of a similar substrate, which is commonly processed by the isomerase TrpF in tryptophan biosynthesis. Moreover, we found that three modern-day HisA enzymes from Proteobacteria and Thermotogae also possess low TrpF activity. We conclude that this bi-functionality was conserved for at least two billion years, most likely without any evolutionary pressure. Although not actively selected for, this trait can become advantageous in the case of a gene loss. Such exaptation is exemplified by the Actinobacteria that have lost the trpF gene but possess the bi-functional HisA homolog PriA, which adopts the roles of both HisA and TrpF. Our findings demonstrate that bi-functionality can perpetuate in the absence of selection for very long time-spans.


Asunto(s)
Evolución Molecular , Histidina/biosíntesis , Isomerasas/genética , Actinobacteria/enzimología , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico/genética , Histidina/genética , Isomerasas/química , Estructura Secundaria de Proteína , Proteobacteria/enzimología , Especificidad por Sustrato , Triptófano/biosíntesis
17.
Int J Mol Sci ; 20(20)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618845

RESUMEN

The spatiotemporal control of enzymes by light is of growing importance for industrial biocatalysis. Within this context, the photo-control of allosteric interactions in enzyme complexes, common to practically all metabolic pathways, is particularly relevant. A prominent example of a metabolic complex with a high application potential is tryptophan synthase from Salmonella typhimurium (TS), in which the constituting TrpA and TrpB subunits mutually stimulate each other via a sophisticated allosteric network. To control TS allostery with light, we incorporated the unnatural amino acid o-nitrobenzyl-O-tyrosine (ONBY) at seven strategic positions of TrpA and TrpB. Initial screening experiments showed that ONBY in position 58 of TrpA (aL58ONBY) inhibits TS activity most effectively. Upon UV irradiation, ONBY decages to tyrosine, largely restoring the capacity of TS. Biochemical characterization, extensive steady-state enzyme kinetics, and titration studies uncovered the impact of aL58ONBY on the activities of TrpA and TrpB and identified reaction conditions under which the influence of ONBY decaging on allostery reaches its full potential. By applying those optimal conditions, we succeeded to directly light-activate TS(aL58ONBY) by a factor of ~100. Our findings show that rational protein design with a photo-sensitive unnatural amino acid combined with extensive enzymology is a powerful tool to fine-tune allosteric light-activation of a central metabolic enzyme complex.


Asunto(s)
Biocatálisis/efectos de la radiación , Luz , Ingeniería de Proteínas , Triptófano Sintasa/química , Regulación Alostérica , Secuencia de Aminoácidos , Activación Enzimática/efectos de la radiación , Cinética , Modelos Moleculares , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad
18.
Biochemistry ; 57(16): 2335-2348, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29600842

RESUMEN

The cell membranes of all archaea contain ether lipids, and a number of archaea are hyperthermophilic. Consequently, the enzymes that catalyze the synthesis of membrane ether lipids had to adopt to these rough conditions. Interestingly, the enzyme that establishes the first ether bond in these lipids, the geranylgeranylglyceryl phosphate synthase (GGGPS), forms hexamers in many hyperthermophilic archaea, while also dimeric variants of this enzyme exist in other species. We used Methanothermobacter thermautotrophicus GGGPS (mtGGGPS) as a model to elucidate the benefit of hexamerization. We studied the oligomerization interfaces in detail by introducing disturbing mutations and subsequently compared the stability and activity of generated dimeric and monomeric variants with the wild-type enzyme. Differential scanning calorimetry revealed a biphasic denaturation of mtGGGPS. The temperature of the first transition varies and rises with increasing oligomerization state. This first phase of denaturation leads to catalytic inactivation, but CD spectroscopy indicated only minor changes on the secondary structure level. The residual part of the fold is extremely thermostable and denatures in a second phase at temperatures >120 °C. The analysis of another distant native GGGPS enzyme affirms these observations. Molecular dynamics simulations revealed three structural elements close to the substrate binding sites with elevated flexibility. We assume that hexamerization might stabilize these structures, and kinetic studies support this hypothesis for the binding pocket of the substrate glycerol 1-phosphate. Oligomerization might thus positively affect the thermostability-flexibility trade-off in GGGPS by allowing a higher intrinsic flexibility of the individual protomers.


Asunto(s)
Transferasas Alquil y Aril/química , Archaea/enzimología , Catálisis , Estabilidad de Enzimas , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Glicerofosfatos/química , Calor , Cinética , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
19.
Biochemistry ; 57(23): 3265-3277, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29498826

RESUMEN

It is important to understand how the catalytic activity of enzymes is related to their conformational flexibility. We have studied this activity-flexibility correlation using the example of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (ssIGPS), which catalyzes the fifth step in the biosynthesis of tryptophan. ssIGPS is a thermostable representative of enzymes with the frequently encountered and catalytically versatile (ßα)8-barrel fold. Four variants of ssIGPS with increased catalytic turnover numbers were analyzed by transient kinetics at 25 °C, and wild-type ssIGPS was likewise analyzed both at 25 °C and at 60 °C. Global fitting with a minimal three-step model provided the individual rate constants for substrate binding, chemical transformation, and product release. The results showed that in both cases, namely, the application of activating mutations and temperature increase, the net increase in the catalytic turnover number is afforded by acceleration of the product release rate relative to the chemical transformation steps. Measurements of the solvent viscosity effect at 25 °C versus 60 °C confirmed this change in the rate-determining step with temperature, which is in accordance with a kink in the Arrhenius diagram of ssIGPS at ∼40 °C. When rotational diffusion rates of electron paramagnetic spin-labels attached to active site loop ß1α1 are plotted in the form of an Arrhenius diagram, kinks are observed at the same temperature. These findings, together with molecular dynamics simulations, demonstrate that a different degree of loop mobility correlates with different rate-limiting steps in the catalytic mechanism of ssIGPS.


Asunto(s)
Proteínas Arqueales/química , Indol-3-Glicerolfosfato Sintasa/química , Simulación de Dinámica Molecular , Pliegue de Proteína , Sulfolobus solfataricus/enzimología , Catálisis , Calor , Dominios Proteicos , Estructura Secundaria de Proteína
20.
Chembiochem ; 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29808949

RESUMEN

The artificial regulation of proteins by light is an emerging subdiscipline of synthetic biology. Here, we used this concept to photocontrol both catalysis and allostery within the heterodimeric enzyme complex imidazole glycerol phosphate synthase (ImGP-S). ImGP-S consists of the cyclase subunit HisF and the glutaminase subunit HisH, which is allosterically stimulated by substrate binding to HisF. We show that a light-sensitive diarylethene (1,2-dithienylethene, DTE)-based competitive inhibitor in its ring-open state binds with low micromolar affinity to the cyclase subunit and displaces its substrate from the active site. As a consequence, catalysis by HisF and allosteric stimulation of HisH are impaired. Following UV-light irradiation, the DTE ligand adopts its ring-closed state and loses affinity for HisF, restoring activity and allostery. Our approach allows for the switching of ImGP-S activity and allostery during catalysis and appears to be generally applicable for the light regulation of other multienzyme complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA