Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Med Inform Assoc ; 29(8): 1372-1380, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35639494

RESUMEN

OBJECTIVE: Assess the effectiveness of providing Logical Observation Identifiers Names and Codes (LOINC®)-to-In Vitro Diagnostic (LIVD) coding specification, required by the United States Department of Health and Human Services for SARS-CoV-2 reporting, in medical center laboratories and utilize findings to inform future United States Food and Drug Administration policy on the use of real-world evidence in regulatory decisions. MATERIALS AND METHODS: We compared gaps and similarities between diagnostic test manufacturers' recommended LOINC® codes and the LOINC® codes used in medical center laboratories for the same tests. RESULTS: Five medical centers and three test manufacturers extracted data from laboratory information systems (LIS) for prioritized tests of interest. The data submission ranged from 74 to 532 LOINC® codes per site. Three test manufacturers submitted 15 LIVD catalogs representing 26 distinct devices, 6956 tests, and 686 LOINC® codes. We identified mismatches in how medical centers use LOINC® to encode laboratory tests compared to how test manufacturers encode the same laboratory tests. Of 331 tests available in the LIVD files, 136 (41%) were represented by a mismatched LOINC® code by the medical centers (chi-square 45.0, 4 df, P < .0001). DISCUSSION: The five medical centers and three test manufacturers vary in how they organize, categorize, and store LIS catalog information. This variation impacts data quality and interoperability. CONCLUSION: The results of the study indicate that providing the LIVD mappings was not sufficient to support laboratory data interoperability. National implementation of LIVD and further efforts to promote laboratory interoperability will require a more comprehensive effort and continuing evaluation and quality control.


Asunto(s)
COVID-19 , Sistemas de Información en Laboratorio Clínico , Humanos , Laboratorios , Logical Observation Identifiers Names and Codes , SARS-CoV-2 , Estados Unidos
2.
J Pathol Inform ; 12: 16, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34221632

RESUMEN

Integrating the health-care enterprise (IHE) is an international initiative to promote the use of standards to achieve interoperability among health information technology systems. The Pathology and Laboratory Medicine domain within IHE has brought together subject matter experts, electronic health record vendors, and digital imaging vendors, to initiate development of a series of digital pathology interoperability guidelines, called "integration profiles" within IHE. This effort begins with documentation of common use cases, followed by identification of available data and technology standards best utilized to achieve those use cases. An integration profile that describes the information flow and technology interactions is then published for trial use. Real world testing occurs in "connectathon" events, in which multiple vendors attempt to connect their products following the interoperability guidance parameters set forth in the profile. This paper describes the overarching set of integration profiles, one of which has been published, to support key digital pathology use cases.

3.
Artículo en Inglés | MEDLINE | ID: mdl-33381280

RESUMEN

BACKGROUND: With the rapid development of new advanced molecular detection methods, identification of new genetic mutations conferring pathogen resistance to an ever-growing variety of antimicrobial substances will generate massive genomic datasets for public health and clinical laboratories. Keeping up with specialized standard coding for these immense datasets will be extremely challenging. This challenge prompted our effort to create a common molecular resistance Logical Observation Identifiers Names and Codes (LOINC) panel that can be used to report any identified antimicrobial resistance pattern. OBJECTIVE: To develop and utilize a common molecular resistance LOINC panel for molecular drug susceptibility testing (DST) data exchange in the U.S. National Tuberculosis Surveillance System using California Department of Public Health (CDPH) and New York State Department of Health as pilot sites. METHODS: We developed an interface and mapped incoming molecular DST data to the common molecular resistance LOINC panel using Health Level Seven (HL7) v2.5.1 Electronic Laboratory Reporting (ELR) message specifications through the Orion Health™ Rhapsody Integration Engine v6.3.1. RESULTS: Both pilot sites were able to process and upload/import the standardized HL7 v2.5.1 ELR messages into their respective systems; albeit CDPH identified areas for system improvements and has focused efforts to streamline the message importation process. Specifically, CDPH is enhancing their system to better capture parent-child elements and ensure that the data collected can be accessed seamlessly by the U.S. Centers for Disease Control and Prevention. DISCUSSION: The common molecular resistance LOINC panel is designed to be generalizable across other resistance genes and ideally also applicable to other disease domains. CONCLUSION: The study demonstrates that it is possible to exchange molecular DST data across the continuum of disparate healthcare information systems in integrated public health environments using the common molecular resistance LOINC panel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA