Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576229

RESUMEN

The prevalence of non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases worldwide. This study examined the potential protective effects of a naturally occurring polyphenolic compound, methyl brevifolincarboxylate (MBC) on fatty liver injury in vitro. The results showed that MBC at its non-cytotoxic concentrations, reduced lipid droplet accumulation and triglyceride (TG) levels in the oleic acid (OA)-treated human hepatocarcinoma cell line, SK-HEP-1 and murine primary hepatocytes. In OA-treated SK-HEP-1 cells and primary murine hepatocytes, MBC attenuated the mRNA expression levels of the de novo lipogenesis molecules, acetyl-coenzyme A carboxylase (Acc1), fatty acid synthase (Fasn) and sterol regulatory element binding protein 1c (Srebp1c). MBC promoted the lipid oxidation factor peroxisome proliferator activated receptor-α (Pparα), and its target genes, carnitine palmitoyl transferase 1 (Cpt1) and acyl-coenzyme A oxidase 1 (Acox1) in both the SK-HEP-1 cells and primary murine hepatocytes. The mRNA results were further supported by the attenuated protein expression of lipogenesis and lipid oxidation molecules in OA-treated SK-HEP-1 cells. The MBC increased the expression of AMP activated protein kinase (AMPK) phosphorylation. On the other hand, MBC treatment dampened the inflammatory mediator's, tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), IL-8, and IL-1ß secretion, and nuclear factor (NF)-κB expression (mRNA and protein) through reduced reactive oxygen species production in OA-treated SK-HEP-1 cells. Taken together, our results demonstrated that MBC possessed potential protective effects against NAFLD in vitro by amelioration of lipid metabolism and inflammatory markers through the AMPK/NF-κB signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Benzopiranos/farmacología , Ácidos Grasos no Esterificados/metabolismo , Hepatocitos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Metabolismo de los Lípidos , FN-kappa B/metabolismo , Animales , Línea Celular Tumoral , Hepatocitos/metabolismo , Humanos , Lípidos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Oléico/química , Phyllanthus/efectos de los fármacos , Especies Reactivas de Oxígeno , Transducción de Señal , Triglicéridos/metabolismo
2.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477525

RESUMEN

Adult humans and mice possess significant classical brown adipose tissues (BAT) and, upon cold-induction, acquire brown-like adipocytes in certain depots of white adipose tissues (WAT), known as beige adipose tissues or WAT browning/beiging. Activating thermogenic classical BAT or WAT beiging to generate heat limits diet-induced obesity or type-2 diabetes in mice. Adiponectin is a beneficial adipokine resisting diabetes, and causing "healthy obese" by increasing WAT expansion to limit lipotoxicity in other metabolic tissues during high-fat feeding. However, the role of its receptors, especially adiponectin receptor 1 (AdipoR1), on cold-induced thermogenesis in vivo in BAT and in WAT beiging is still elusive. Here, we established a cold-induction procedure in transgenic mice over-expressing AdipoR1 and applied a live 3-D [18F] fluorodeoxyglucose-PET/CT (18F-FDG PET/CT) scanning to measure BAT activity by determining glucose uptake in cold-acclimated transgenic mice. Results showed that cold-acclimated mice over-expressing AdipoR1 had diminished cold-induced glucose uptake, enlarged adipocyte size in BAT and in browned WAT, and reduced surface BAT/body temperature in vivo. Furthermore, decreased gene expression, related to thermogenic Ucp1, BAT-specific markers, BAT-enriched mitochondrial markers, lipolysis and fatty acid oxidation, and increased expression of whitening genes in BAT or in browned subcutaneous inguinal WAT of AdipoR1 mice are congruent with results of PET/CT scanning and surface body temperature in vivo. Moreover, differentiated brown-like beige adipocytes isolated from pre-adipocytes in subcutaneous WAT of transgenic AdipoR1 mice also had similar effects of lowered expression of thermogenic Ucp1, BAT selective markers, and BAT mitochondrial markers. Therefore, this study combines in vitro and in vivo results with live 3-D scanning and reveals one of the many facets of the adiponectin receptors in regulating energy homeostasis, especially in the involvement of cold-induced thermogenesis.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Receptores de Adiponectina/genética , Termogénesis/genética , Proteína Desacopladora 1/genética , Adipocitos Beige/metabolismo , Tejido Adiposo Beige/diagnóstico por imagen , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Blanco/diagnóstico por imagen , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Transgénicos/genética , Ratones Transgénicos/metabolismo , Mitocondrias/genética , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Tomografía de Emisión de Positrones
3.
Eur J Clin Invest ; 50(3): e13204, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31990365

RESUMEN

BACKGROUND: The heart is a highly oxidative tissue, thus mitochondria play a major role in maintaining optimal cardiac function. Our previous study established a dietary-induced obese minipig with cardiac fibrosis. The aim of this study was to elucidate the role of mitochondrial dynamics in cardiac fibrosis of obese minipigs. DESIGN: Four-month-old Lee-Sung minipigs were randomly divided into two groups: a control group (C) and an obese group (O) by feeding a control diet or a high-fat diet (HFD) for 6 months. Exposure of H9c2 cardiomyoblasts to palmitate was used to explore the effects of high-fat on induction of myocardial injury in vitro. RESULTS: The O pigs displayed greater heart weight and cardiac collagen accumulation. Obese pigs exhibited a lower antioxidant capacity, ATP concentration, and higher oxidative stress in the left ventricle (LV). The HFD caused downregulation in protein expression of PGC-1α and OPA1, and upregulation of DRP1, FIS1, and PINK1 in the LV of O compared to C pigs. Furthermore, palmitate induced apoptosis and decreased ATP content in H9c2 cells. Palmitate elevated the protein expression of DRP1 and PINK1 in these cells. Inhibition of DRP1 protein expression by siDRP1 in H9c2 cells resulted in enhanced ATP and decreased palmitate-induced apoptosis. CONCLUSIONS: These results suggest that mitochondrial dynamics were linked to the progression of obesity-related cardiac injury. Inhibition of DRP1 after palmitate exposure in H9c2 cells resulted in improved ATP level and decreased apoptosis in vitro suggesting that mitochondrial fission serves a key role in progression of obesity-induced cardiac fibrosis.


Asunto(s)
Dinaminas/metabolismo , Cardiopatías/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Dinaminas/genética , Fibrosis/metabolismo , Mitocondrias Cardíacas/metabolismo , Obesidad , Ratas , Respiración , Porcinos , Porcinos Enanos
4.
Molecules ; 25(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916992

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is involved in lipid metabolism; however, the role of LRRK2 in lipid metabolism to affect non-alcoholic fatty liver disease (NAFLD) is still unclear. In the mouse model of NAFLD induced by a high-fat diet, we observed that LRRK2 was decreased in livers. In HepG2 cells, exposure to palmitic acid (PA) down-regulated LRRK2. Overexpression and knockdown of LRRK2 in HepG2 cells were performed to further investigate the roles of LRRK2 in lipid metabolism. Our results showed that ß-oxidation in HepG2 cells was promoted by LRRK2 overexpression, whereas LRRK2 knockdown inhibited ß-oxidation. The critical enzyme of ß-oxidation, carnitine palmitoyltransferase 1A (CPT1A), was positively regulated by LRRK2. Our data suggested that the regulation of CPT1A by LRRK2 may be via the activation of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor α (PPARα). The overexpression of LRRK2 reduced the concentration of a pro-inflammatory cytokine, tumor necrosis factor α (TNFα), induced by PA. The increase in ß-oxidation may promote lipid catabolism to suppress inflammation induced by PA. These results indicated that LRRK2 participated in the regulation of ß-oxidation and suggested that the decreased LRRK2 may promote inflammation by suppressing ß-oxidation in the liver.


Asunto(s)
Carnitina O-Palmitoiltransferasa/fisiología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/fisiología , Oxígeno/metabolismo , Animales , Núcleo Celular/metabolismo , Citocinas/metabolismo , Dieta Alta en Grasa , Células Hep G2 , Humanos , Inflamación , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxidación-Reducción , PPAR alfa/metabolismo , Ácido Palmítico/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
5.
Eur J Clin Invest ; 48(7): e12942, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29682734

RESUMEN

BACKGROUND: Pericardial adipose tissue (PAT) volume is highly associated with the presence and severity of cardiometabolic diseases, but the underlying mechanism is unknown. We previously demonstrated that a high-fat diet (HFD) induced metabolic dysregulation, cardiac fibrosis and accumulation of more PAT in minipigs. This study used our obese minipig model to investigate the characteristics of PAT and omental visceral fat (VAT) induced by a HFD, and the potential link between PAT and HFD-related myocardial fibrosis. MATERIALS AND METHODS: Five-month-old Lee-Sung minipigs were made obese by feeding a HFD for 6 months. RESULTS: The HFD induced dyslipidemia, cardiac fibrosis and more fat accumulation in the visceral and pericardial depots. The HFD changes the fatty acid composition in the adipose tissue by decreasing the portion of linoleic acid in the VAT and PAT. No arachidonic acid was detected in the VAT and PAT of control pigs, whereas it existed in the same tissues of obese pigs fed the HFD. Compared with the control pigs, elevated levels of malondialdehyde and TNFα were exhibited in the plasma and PAT of obese pigs. HFD induced greater size of adipocytes in VAT and PAT. Higher levels of GH, leptin, OPG, PDGF, resistin, SAA and TGFß were observed in obese pig PAT compared to VAT. CONCLUSION: This study demonstrated the similarities and dissimilarities between PAT and VAT under HFD stimulus. In addition, this study suggested that alteration in PAT contributed to the myocardial damage.


Asunto(s)
Tejido Adiposo/fisiología , Obesidad/fisiopatología , Adipocitos/patología , Adipoquinas/metabolismo , Tejido Adiposo/patología , Animales , Composición Corporal/fisiología , Tamaño de la Célula , Dieta Alta en Grasa , Dislipidemias/etiología , Dislipidemias/patología , Dislipidemias/fisiopatología , Ácidos Grasos/química , Femenino , Fibrosis/fisiopatología , Grasa Intraabdominal/patología , Grasa Intraabdominal/fisiología , Metabolismo de los Lípidos/fisiología , Masculino , Miocardio/patología , Obesidad/patología , Estrés Oxidativo/fisiología , Pericardio/fisiología , Porcinos , Porcinos Enanos
6.
J Biomed Sci ; 25(1): 24, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540173

RESUMEN

BACKGROUND: Adiponectin (ADN) is an adipokine derived from adipocytes. It binds to adiponectin receptor 1 and 2 (AdipoR1 and R2) to exert its function in regulating whole-body energy homeostasis and inflammatory responses. However, the role of ADN-AdipoR1 signaling in intestinal inflammation is controversial, and its role in the regulation of neutrophils is still unclear. Our goal was to clarify the role of AdipoR1 signaling in colitis and the effects on neutrophils. METHODS: We generated porcine AdipoR1 transgenic mice (pAdipoR1 mice) and induced murine colitis using dextran sulfate sodium (DSS) to study the potential role of AdipoR1 in inflammatory bowel disease. We also treated a THP-1 macrophage and a HT-29 colon epithelial cell line with ADN recombinant protein to study the effects of ADN on inflammation. RESULTS: After inducing murine colitis, pAdipoR1 mice developed more severe symptoms than wild-type (WT) mice. Treatment with ADN increased the expression of pro-inflammatory factors in THP-1 and HT-29 cells. Moreover, we also observed that the expression of cyclooxygenase2 (cox2), neutrophil chemokines (CXCL1, CXCL2 and CXCL5), and the infiltration of neutrophils were increased in the colon of pAdipoR1 mice. CONCLUSIONS: Our study showed that ADN-AdipoR1 signaling exacerbated colonic inflammation through two possible mechanisms. First, ADN-AdipoR1 signaling increased pro-inflammatory factors. Second, AdipoR1 enhanced neutrophil chemokine expression and recruited neutrophils into the colonic tissue to increase inflammation.


Asunto(s)
Adiponectina/genética , Colitis/genética , Expresión Génica , Enfermedades Inflamatorias del Intestino/genética , Receptores de Adiponectina/genética , Transducción de Señal , Adiponectina/metabolismo , Animales , Sulfato de Dextran/farmacología , Femenino , Células HT29 , Humanos , Ratones Transgénicos , Receptores de Adiponectina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sus scrofa , Células THP-1
7.
J Nutr ; 147(3): 293-303, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28077733

RESUMEN

Background: Prevalent worldwide obesity is associated with increased incidence of nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. The identification of noninvasive biomarkers for NAFLD is of recent interest. Because primary de novo lipogenesis occurs in chicken liver as in human liver, adult chickens with age-associated steatosis resembling human NAFLD is an appealing animal model.Objective: The objective of this study was to screen potential biomarkers in the chicken model for NAFLD by transcriptomic and proteomic analysis.Methods: Hy-Line W-36 laying hens were fed standard feed from 25 to 45 wk of age to induce fatty liver. They were killed every 4 wk, and liver and plasma were collected at each time point to assess fatty liver development and for transcriptomic and proteomic analysis. Next, selected biomarkers were confirmed in additional experiments by providing supplements of the hepatoprotective nutrients betaine [300, 600, or 900 parts per million (ppm) in vivo; 2 mM in vitro] or docosahexaenoic acid (DHA; 1% in vivo; 100 µM in vitro) to 30-wk-old Hy-Line W-36 laying hens for 4 mo and to Hy-Line W-36 chicken primary hepatocytes with oleic acid-induced steatosis. Liver or hepatocyte lipid contents and the expression of biomarkers were then examined.Results: Plasma acetoacetyl-CoA synthetase (AACS), dipeptidyl-peptidase 4 (DPP4), glutamine synthetase (GLUL), and glutathione S-transferase (GST) concentrations are well-established biomarkers for NAFLD. Selected biomarkers had significant positive associations with hepatic lipid deposition (P < 0.001). Betaine (900 ppm in vivo; 2 mM in vitro) and DHA (1% in vivo; 100 µM in vitro) supplementation both resulted in lower steatosis accompanied by the reduced expression of selected biomarkers in vivo and in vitro (P < 0.05).Conclusion: This study used adult laying hens to identify biomarkers for NAFLD and indicated that AACS, DPP4, GLUL, and GST could be considered to be potential diagnostic indicators for NAFLD in the future.


Asunto(s)
Enfermedades de las Aves/sangre , Pollos/sangre , Hígado Graso/veterinaria , Proteómica/métodos , Transcriptoma , Animales , Betaína/sangre , Biomarcadores , Enfermedades de las Aves/diagnóstico , Ácidos Docosahexaenoicos/sangre , Hígado Graso/sangre , Hígado Graso/diagnóstico , Femenino
8.
Lipids Health Dis ; 16(1): 33, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-28173868

RESUMEN

BACKGROUND: Changing dietary fatty acid composition in modern diet influences the prevalence of obesity. Increasing evidences suggest favorable effects of n-3 PUFA for protecting against obesity and the metabolic syndrome. However, the regulation of n-3 PUFA in adipose is still unclear. Thus, this study addressed metabolism of different dietary fats in the adipose tissue of porcine model. METHODS: Eight-week-old cross-bred pigs were randomly assigned to three groups and fed a 2% fat diet for 30 days from either soybean oil (SBO), docosahexaenoic acid (DHA) or beef tallow. An in vitro experiment was conducted in which linoleic acid (LA), DHA or oleic acid (OA) were added to represent the major fatty acid in the SBO-, DHA- or BT- diets, respectively. Adipocytes size and lipid metabolism related genes were analyzed. RESULTS: Plasma triacylglycerol (TAG) was lower in DHA- than in BT-fed pigs, and the product of lipolysis, glycerol was highest in BT-fed pigs. In addition, expression of the lipolytic genes, adipose triglyceride lipase and hormone sensitive lipase was higher in BT-fed pigs and with OA treatment in vitro. DHA promoted protein kinase A activity in pigs without affecting lipolytic genes. Adipocyte cell sizes, TAG content and expression of lipogenic-related genes including, adipose differentiated related protein (ADRP) and diacylglycerol acyltransferase 1 (DGAT1) were elevated by DHA in vivo and in vitro, indicating DHA promoted adipogenesis to trap TAG in adipose tissue. Fatty acid ß-oxidation genes were increased in the DHA-fed pigs. CONCLUSION: This effect was partly explained by the effect of DHA to promote adipogenesis to trap TAG in adipocytes and also increase expression of genes involved in adipocyte fatty acid oxidation. Therefore, our results suggest a direct effect of DHA on adipocyte metabolism, resulting in TAG turnover and fatty acid dissipation to facilitate plasma lipid uptake from the circulation.


Asunto(s)
Adipocitos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Lipogénesis/genética , Proteínas/genética , Triglicéridos/metabolismo , Adipocitos/fisiología , Adipogénesis , Animales , Dieta , Ácidos Docosahexaenoicos/metabolismo , Femenino , Masculino , Modelos Animales , Obesidad/metabolismo , Obesidad/fisiopatología , Porcinos/metabolismo , Regulación hacia Arriba
9.
Int J Mol Sci ; 17(10)2016 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-27735847

RESUMEN

The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid ß-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Síndrome Metabólico/etiología , Obesidad/complicaciones , Tejido Adiposo/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos Omega-3/metabolismo , Humanos
10.
Eur J Clin Invest ; 45(1): 70-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25376184

RESUMEN

BACKGROUND: During the progression of the metabolic syndrome (MetS), cardiovascular diseases (CVD) appear clinically in many individuals and cause death. As a result, it is essential to set up an optimal animal model to study the mechanism of MetS leading to CVD. SIRT1 and AMPK are the master regulators of lipid and carbohydrate metabolism. The objective of this study was to establish a miniature pig model of Western diet-induced MetS and investigate the role of SIRT1/AMPK during MetS development. MATERIALS AND METHODS: Five-month-old Lee-Sung (LS) and Lanyu (LY) minipigs were each randomly assigned to two groups: control diet (C) and Western diet (W), in a 6-month experimental period. RESULTS: Western diet caused obesity in both minipig models. Compared with the CLS pigs, WLS pigs exhibited hypercholesterolaemia. However, WLY pigs maintained a similar plasma lipid profile to the CLY pigs. Western diet caused a lower antioxidant capacity in the liver of both pig models. WLS pigs had higher triglyceride accumulation in the liver than CLS pigs, whereas WLY and CLY pigs had similar hepatic triglyceride accumulation. Compared with CLS pigs, WLS pigs had a lower hepatic SIRT1 expression, whereas WLY pigs had a higher expression of AMPK, FOXO1 and SIRT1 than CLY pigs. CONCLUSION: Long-term feeding of the Western diet to Lee-Sung miniature pigs not only caused obesity but also induced MetS and fatty liver, whereas Western diet induced obesity in Lanyu pigs without metabolic dysfunctions. SIRT1/AMPK and their downstream pathways might be one of the possible regulators for pathological obesity in Lee-Sung pigs.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Dieta Occidental/efectos adversos , Síndrome Metabólico/etiología , Sirtuina 1/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Factores de Transcripción Forkhead/metabolismo , Hipercolesterolemia/etiología , Hígado/fisiología , Masculino , Obesidad/etiología , Distribución Aleatoria , Porcinos , Porcinos Enanos
11.
Cytotherapy ; 15(8): 971-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23732048

RESUMEN

BACKGROUND AIMS: Obesity and its associated diseases demand better therapeutic strategies. Regenerative medicine combined with gene therapy has emerged as a promising approach in various clinical applications. Adiponectin (ApN) and its receptors have been demonstrated to play beneficial roles in modulating glucose and lipid homeostasis. In the current study, we tested such an approach by transplanting mesenchymal stromal cells (MSCs) from porcine ApN receptor (pAdipoR) 1-transgenic mice into high-fat/sucrose diet (HFSD)-fed mice. METHODS: Twenty 6-week-old Friend virus B/NJNarl male mice were randomly assigned into four groups with the control fed a chow diet (chow) and others HFSD for 10 months. The HFSD groups were then intraperitoneally injected once per week for 8 weeks with placebo (200 µL phosphate-buffered saline), wild-type MSC (WT-MSC, 2 × 10(6) cells/200 µL phosphate-buffered saline) or pAdipoR1-transgenic MSC (pR1-tMSC, 2 × 10(6) cells/200 µL phosphate-buffered saline), respectively. Body weights, blood samples, tissue histology, and gene expression and protein levels of metabolism-associated genes were analyzed. RESULTS: Both WT-MSC and pR1-tMSC transplantations restored the messenger RNA expression of AdipoR1, with those of glucose transporter 4 and 5'-adenosine monophosphate-activated protein kinase catalytic subunit α-1 and protein levels of pyruvate kinase induced by pR1-tMSC in the muscles of HFSD-fed mice. In the liver, both WT-MSC and pR1-tMSC ameliorated HFSD-induced hepatosteatosis, with the gene expression of lipoprotein lipase and hormone-sensitive lipase upregulated by the latter. Lastly, pR1-tMSC transplantation reduced fatty acid synthase mRNA levels in the adipose tissues of HFSD-fed mice. CONCLUSIONS: This study demonstrates the modulatory actions of MSC and pR1-tMSC on genes associated with glucose and lipid metabolism and provides insights into its therapeutic application for obesity-associated metabolic complication.


Asunto(s)
Glucemia/metabolismo , Metabolismo de los Lípidos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Obesidad/terapia , Receptores de Adiponectina/genética , Tejido Adiposo/metabolismo , Animales , Animales Modificados Genéticamente , Tratamiento Basado en Trasplante de Células y Tejidos , Acido Graso Sintasa Tipo I/biosíntesis , Acido Graso Sintasa Tipo I/genética , Terapia Genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/biosíntesis , Hepatocitos/metabolismo , Lipoproteína Lipasa/biosíntesis , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Músculos/citología , Músculos/metabolismo , Obesidad/metabolismo , Piruvato Quinasa/metabolismo , ARN Mensajero/biosíntesis , Esterol Esterasa/metabolismo , Porcinos
12.
Arch Physiol Biochem ; 129(6): 1289-1297, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34338085

RESUMEN

The purpose of this study was to investigate the nexus between mitochondrial function and kidney injury by using a dietary-induced obese minipig model. Female Lee-Sung minipigs feeding a high-fat diet (HFD) for 6 months exhibited obesity, hyperglycaemia and dyslipidemia. HFD elevated the levels of plasma biomarkers related to renal injury, including symmetric dimethylarginine, creatinine and urea nitrogen. An extensive structural change in tubules and glomeruli was observed in HFD-fed pigs. A great amount of triacylglycerol was accumulated in HFD kidney compared to control kidney, whereas a reduction of ATP level and antioxidant capacity were exhibited in HFD kidney. Moreover, HFD altered the expressions of mitochondrial-related protein in renal cortex. To conclude, long-term HFD feeding to Lee-Sung minipigs induced obesity and kidney injury accompanied by abnormal mitochondrial functions in the renal cortex, suggesting an interrelationship with renal disease progression.


Asunto(s)
Dieta Alta en Grasa , Riñón , Porcinos , Animales , Femenino , Ratones , Porcinos Enanos , Dieta Alta en Grasa/efectos adversos , Riñón/metabolismo , Obesidad/complicaciones , Mitocondrias/metabolismo , Ratones Endogámicos C57BL
13.
Mol Ther ; 18(2): 327-33, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19809401

RESUMEN

The efficacy of daily porcine growth hormone (GH) injections versus plasmid-driven porcine GH-releasing hormone (pGHRH) production to promote growth was assessed. Ten-day-old piglets were injected intramuscularly with 0.1, 1, or 3 mg pGHRH, or a control plasmid followed by electroporation. Plasmid constructs were driven by a synthetic muscle-specific promoter. A fifth group received daily injections of GH [0.15 mg/(kg.day)]. Control and pGHRH-treated pigs were pair-fed to GH-treated pigs. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Weight gains of GH- and pGHRH-treated pigs were greater than of controls (P < 0.001) due to greater lean mass accretion; fat accretion was similar across all treatments. Weight gain of pGHRH- and GH-treated pigs was similar for 6 weeks, but over the final 10 days, only pigs administered the highest plasmid dose maintained higher growth rates. Serum insulin-like growth factor-I (IGF-I) levels were two- to threefold higher in GH- and pGHRH-treated pigs than in controls after 4 weeks (P = 0.05), but subsequently decreased to control levels in the pGHRH-treated group. Organ weights were greater in GH- than pGHRH-treated and control piglets (P < 0.02). These results demonstrate that pGHRH transfer is effective for promoting growth and avoids the need for the frequent injections necessitated with peptide hormone use.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/farmacología , Inyecciones Intramusculares/métodos , Plásmidos/administración & dosificación , Absorciometría de Fotón , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Hormona del Crecimiento/administración & dosificación , Hormona Liberadora de Hormona del Crecimiento/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Plásmidos/genética , Porcinos
14.
Poult Sci ; 100(11): 101470, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34624771

RESUMEN

Endodermal epithelial cells (EECs) within the yolk sac membrane (YSM) of avian embryos are responsible for the absorption and utilization of lipids. The lipids in the yolk are mostly composed of very low density lipoprotein (VLDL), uptake mainly depends on clathrin-mediated endocytosis (CME). The CME relies on vesicle formation through the regulation of dynamin (DNM). However, it is still unclear whether DNMs participate in avian embryonic development. We examined mRNA expression levels of several genes involved in lipid transportation and utilization in YSM during Japanese quail embryonic development using qPCR. The mRNA levels of DNM1 and DNM3 were elevated at incubation d 8 and 10 before the increase of SOAT1, CIDEA, CIDEC, and APOB mRNA's. The elevated gene expression suggested the increased demand for DNM activity might be prior to cholesteryl ester production, lipid storage, and VLDL transport. Hinted by the result, we further investigated the role of DNMs in the embryonic development of Japanese quail. A DNM inhibitor, dynasore, was injected into fertilized eggs at incubation d 3. At incubation d 10, the dynasore-injected embryo showed increased embryonic lethality compared to control groups. Thus, the activity of DNMs was essential for the embryonic development of Japanese quail. The activities of DNMs were also verified by the absorptions of fluorescent VLDL (DiI-yVLDL) in EECs. Fluorescent signals in EECs were decreased significantly after treatment with dynasore. Finally, EECs were pretreated with S-Nitroso-L-glutathione (GSNO), a DNM activator, for 30 min; this increased the uptake of DiI-yVLDL. In conclusion, DNMs serve a critical role in mediating lipid absorption in YSM. The activity of DNMs was an integral part of development in Japanese quail. Our results suggest enhancing lipid transportation through an increase of DNM activity may improve avian embryonic development.


Asunto(s)
Coturnix , Saco Vitelino , Animales , Pollos , Dinaminas , Desarrollo Embrionario , Células Epiteliales , Lípidos
15.
Poult Sci ; 100(3): 100869, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33516481

RESUMEN

Fatty liver diseases, common metabolic diseases in chickens, can lead to a decrease in egg production and sudden death of chickens. To solve problems caused by the diseases, reliable chicken models of fatty liver disease are required. To generate chicken models of fatty liver, 7-week-old ISA female chickens were fed with a control diet (17% protein, 5.3% fat, and 1,300 mg/kg choline), a low protein and high fat diet (LPHF, 13% protein, 9.1% fat, and 1,300 mg/kg choline), a high cholesterol with low choline diet (CLC, 17% protein, 7.6% fat with additional 2% cholesterol, and 800 mg/kg choline), a low protein, high fat, high cholesterol, and low choline diet (LPHFCLC, 13% protein, 12.6% fat with additional 2% cholesterol, and 800 mg/kg choline) for 4 wk. Our data showed that the CLC and LPHFCLC diets induced hyperlipidemia. Histological examination and the content of hepatic lipids indicated that the CLC and LPHFCLC diets induced hepatic steatosis. Plasma dipeptidyl peptidase 4, a biomarker of fatty liver diseases in laying hens, increased in chickens fed with the CLC or LPHFCLC diets. Hepatic ballooning and immune infiltration were observed in these livers accompanied by elevated interleukin 1 beta and lipopolysaccharide induced tumor necrosis factor mRNAs suggesting that the CLC and LPHFCLC diets also caused steatohepatitis in these livers. These diets also induced hepatic steatosis in Plymouth Rock chickens. Thus, the CLC and LPHFCLC diets can be used to generate models for fatty liver diseases in different strains of chickens. In ISA chickens fed with the CLC diet, peroxisome proliferator-activated receptor γ, sterol regulatory element binding transcription factor 1, and fatty acid synthase mRNAs increased in the livers, suggesting that lipogenesis was enhanced by the CLC treatment. Our data show that treatment with CLC or LPHFCLC for 4 wk induces fatty liver disease in chickens. These diets can be utilized to rapidly generate chicken models for fatty liver research.


Asunto(s)
Pollos , Colesterol , Colina , Dieta , Hígado Graso , Hiperlipidemias , Animales , Colesterol/metabolismo , Colina/metabolismo , Dieta/veterinaria , Modelos Animales de Enfermedad , Hígado Graso/fisiopatología , Hígado Graso/veterinaria , Femenino , Hiperlipidemias/veterinaria , Hígado/patología , Enfermedades de las Aves de Corral/fisiopatología
16.
Nutrients ; 13(7)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34371822

RESUMEN

Tetranectin (TN), a plasminogen-binding protein originally involved in fibrinolysis and bone formation, was later identified as a secreted adipokine from human and rat adipocytes and positively correlated with adipogenesis and lipid metabolism in adipocytes. To elucidate the nutritional regulation of adipogenic TN from diets containing different sources of fatty acids (saturated, n-6, n-3) in adipocytes, we cloned the coding region of porcine TN from a cDNA library and analyzed tissue expressions in weaned piglets fed with 2% soybean oil (SB, enriched in n-6 fatty acids), docosahexaenoic acid oil (DHA, an n-3 fatty acid) or beef tallow (BT, enriched in saturated and n-9 fatty acids) for 30 d. Compared with tissues in the BT- or SB-fed group, expression of TN was reduced in the adipose, liver and lung tissues from the DHA-fed group, accompanied with lowered plasma levels of triglycerides and cholesterols. This in vivo reduction was also confirmed in porcine primary differentiated adipocytes supplemented with DHA in vitro. Then, promoter analysis was performed. A 1956-bp putative porcine TN promoter was cloned and transcription binding sites for sterol regulatory-element binding protein (SREBP)-1c or forkhead box O proteins (FoxO) were predicted on the TN promoter. Mutating binding sites on porcine TN promoters showed that transcriptional suppression of TN by DHA on promoter activity was dependent on specific response elements for SREBP-1c or FoxO. The inhibited luciferase promoter activity by DHA on the TN promoter coincides with reduced gene expression of TN, SREBP-1c, and FoxO1 in human embryonic kidney HEK293T cells supplemented with DHA. To conclude, our current study demonstrated that the adipogenic TN was negatively regulated by nutritional modulation of DHA both in pigs in vivo and in humans/pigs in vitro. The transcriptional suppression by DHA on TN expression was partly through SREBP-1c or FoxO. Therefore, down-regulation of adipogenic tetranectin associated with fibrinolysis and adipogenesis may contribute to the beneficial effects of DHA on ameliorating obesity-induced metabolic syndromes such as atherosclerosis and adipose dysfunctions.


Asunto(s)
Adipogénesis/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Factores de Transcripción Forkhead/metabolismo , Lectinas Tipo C/efectos de los fármacos , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Adipocitos/efectos de los fármacos , Animales , Fibrinólisis/efectos de los fármacos , Células HEK293 , Humanos , Fenómenos Fisiológicos de la Nutrición/genética , Porcinos
17.
Artículo en Inglés | MEDLINE | ID: mdl-31678270

RESUMEN

Nutrients are utilized and re-constructed by endodermal epithelial cells (EECs) of yolk sac membrane (YSM) in avian species during embryonic development. Sterol O-acyltransferase 1 (SOAT1) is the key enzyme to convert cholesterol to cholesteryl ester for delivery to growing embryos. During embryonic development, yolk absorption is concomitant with significant changes of SOAT1 mRNA concentration and enzyme activity in YSM. Presence of microRNAs (miRNAs) are observed in the embryonic liver and muscle during avian embryogenesis. However, the expression of miRNAs in YSM during embryogenesis and the involvement of miRNAs in lipid utilization are not known. Using a miRNA sequencing technique, we found several miRNA candidates and confirmed their expression patterns individually by real time PCR. MiRNA candidates were selected based on the expression pattern and their possible roles in inhibiting transforming growth factor beta receptor type 1 (TGFBR1) that would regulate the function of SOAT1. Similar to SOAT1 mRNA, the gga-miR-181a-5p expression was gradually elevated during embryonic development. However, the expression of gga-miR-429-3p in YSM was gradually decreased during embryonic development. The inhibitory effects of gga-miR-181a-5p or gga-miR-429-3p on the potential targets (SOAT1 and TGFBR1) were demonstrated by transient miRNA transfections in EECs. We also found that mutated TGFBR1 3'UTR prevented the direct pairings of gga-miR-181a-5p and gga-miR-429-3p. Treatment of TGFBR1 inhibitor, LY364947, further decreased SOAT1 transcription. Similar results were also observed by the miRNA transfection studies. The results showed the vital participations of gga-miR-181a-5p and gga-miR-429-3p in regulating TGFß pathway, and affecting downstream SOAT1 expression and function in the YSM. This is indicative of possible regulation of avian yolk lipid utilization by changing YSM miRNA expressions.


Asunto(s)
Proteínas Aviares/biosíntesis , Embrión no Mamífero/embriología , Endodermo/embriología , MicroARNs/metabolismo , Codorniz/embriología , Esterol O-Aciltransferasa/biosíntesis , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteínas Aviares/genética , MicroARNs/genética , Codorniz/genética , Esterol O-Aciltransferasa/genética , Factor de Crecimiento Transformador beta/genética
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(7): 957-965, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30872120

RESUMEN

BACKGROUND: Heart is a high energy demand organ and cardiac fat is the main local energy source for heart. Alteration in cardiac fat may affect cardiac energy and contribute to heart dysfunction. We previously observed a link between alteration in pericardial fat (PAT) and local adverse effects on myocardial fibrosis in obese minipigs. This study investigated the role of PAT on cardiac energy and mitochondrial function, and elucidated a potential mechanism for PAT in cardiac fibrosis. MATERIALS AND METHODS: Five-month-old Lee-Sung minipigs were made obese by feeding a high-fat diet (HFD) for 6 months. The conditioned medium from PAT of obese minipigs (PAT-CM) was collected and H9C2 cells were treated with it to study mechanisms. RESULTS: HFD caused a cardiac energy deficit and fibrosis in the left ventricle. An elevated content of IL6 and malondialdehyde was found in the PAT of obese pigs. Obese pigs exhibited an increased level of oleic acid and a reduced level of saturated fatty acids in PAT compared to control pigs. HFD did not alter the metabolic characteristics of epicardial fat. PAT-CM caused apoptosis of H9C2 cells and inhibited basal mitochondrial respiration and ATP production. Protein expressions for mitochondrial dynamics- (Mfn2, Opa1, Drp1, and Fis1) and a mitophagy-related protein (Parkin) were suppressed by PAT-CM. PAT-CM enhanced the protein expression of LC3II, and the ratio of LC3II/LC3I. To conclude, PAT was involved in cardiac fibrosis of HFD-fed minipigs. The secretomes of PAT impaired mitochondrial functions and caused cardiomyocyte apoptosis in a paracrine manner.


Asunto(s)
Tejido Adiposo/metabolismo , Fibrosis/etiología , Mitocondrias/fisiología , Obesidad/complicaciones , Pericardio/citología , Animales , Apoptosis , Línea Celular , Medios de Cultivo Condicionados/farmacología , Dieta Alta en Grasa/efectos adversos , Miocitos Cardíacos/citología , Comunicación Paracrina , Porcinos , Porcinos Enanos
19.
J Nutr ; 138(2): 282-6, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18203892

RESUMEN

This experiment was designed to test the effect of polymorphism in the cholesterol 7-alpha hydroxylase (CYP7) gene locus and dietary cholesterol (C) on cerebrum C in neonatal pigs fed sow's milk formulas. Thirty-six pigs (18 male and 18 female) genetically selected for high (HG) or low (LG) plasma total C were weaned at 24-36 h after birth and assigned in a 2 x 2 x 2 factorial arrangement of treatments with 2 diets (0 or 0.5% C), 2 sexes, and 2 genotypes (HG and LG). Individually housed pigs consumed diets ad libitum for 42 d. Open-field behavior was tested at wk 2 and 4. All pigs were killed at 42 d of age, the cerebrum was weighed, and C content and concentration measured. All data were analyzed by general linear model ANOVA. Cerebrum weight was greater in HG than LG pigs (P < 0.03) but was not affected by diet or sex. Pigs fed C tended to have a higher cerebrum C concentration than those deprived (P = 0.12). At 2 wk, LG pigs explored a novel open-field environment less often (P < 0.001) than did HG pigs. At 4 wk, some LG pigs explored the open field but fewer (P < 0.001) vs. HG pigs retreated back to the safe area. There were no genotype x diet, genotype x sex, or diet x sex interactions affecting cerebrum weight, or C content or concentration. Polymorphism in the CYP7 gene locus affected cerebrum weight and behavior and dietary C tended to increase cerebrum C concentration in neonatal pigs. These findings in neonatal pigs have considerable potential importance in human infant nutrition and behavioral development.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cerebro/efectos de los fármacos , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol en la Dieta/farmacología , Colesterol/sangre , Porcinos/genética , Porcinos/fisiología , Alelos , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Cerebro/anatomía & histología , Cerebro/enzimología , Cerebro/crecimiento & desarrollo , Dieta/veterinaria , Femenino , Masculino , Sustitutos de la Leche , Tamaño de los Órganos/efectos de los fármacos , Porcinos/sangre , Porcinos/crecimiento & desarrollo
20.
J Nutr ; 138(4): 674-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18356319

RESUMEN

Serum amyloid A protein (SAA) is an apolipoprotein that can replace apolipoprotein A1 (apoA1) as the major apolipoprotein of HDL. Porcine hepatic SAA mRNA is increased by dietary docosahexaenoic acid (DHA) treatment. The purpose of this study was to investigate the role of SAA protein in regulating gene expression related to lipid metabolism in pigs. First, we demonstrated that the 100-micromol/L DHA treatment increased SAA and apoA1 mRNA expression in porcine hepatic cell cultures (P < 0.05). Secondly, we produced porcine SAA recombinant protein and found that the addition of SAA to porcine preadipocytes in culture stimulated interleukin-6 (IL-6) mRNA expression (P < 0.05), indicating a similar biological function of porcine SAA and human SAA. We also found PPARalpha and PPARgamma mRNA were decreased (40 and 60%, respectively) in differentiated adipocytes after treatment with 2 mumol/L SAA. SAA treatment also increased inflammatory cytokine gene expression (IL-6 and tumor necrosis factor alpha) and glycerol release (P < 0.05), indicating increased lipolysis. Because the expression of perilipin, a lipid droplet-protective protein, was reduced by the SAA treatment, we hypothesized that SAA increased lipolysis by decreasing the expression of perilipin, which would then allow an increase in hormone sensitive lipase activity. In conclusion, we demonstrated that the DHA-induced SAA gene expression decreased PPAR expression and consequently downregulated the expression of several genes involved in lipid metabolism. Accordingly, SAA may play a critical role in mediating the function of dietary DHA on lipid metabolism and could be a factor in regulating obesity.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Proteína Amiloide A Sérica/farmacología , Porcinos/genética , Porcinos/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Dieta , Ácidos Docosahexaenoicos/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA