Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(5): 1804-1811, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36349561

RESUMEN

Corpus callosum defects are frequent congenital cerebral disorders caused by mutations in more than 300 genes. These include genes implicated in corpus callosum development or function, as well as genes essential for mitochondrial physiology. However, in utero corpus callosum anomalies rarely raise a suspicion of mitochondrial disease and are characterized by a very large clinical heterogeneity. Here, we report a detailed pathological and neuro-histopathological investigation of nine foetuses from four unrelated families with prenatal onset of corpus callosum anomalies, sometimes associated with other cerebral or extra-cerebral defects. Next generation sequencing allowed the identification of novel pathogenic variants in three different nuclear genes previously reported in mitochondrial diseases: TIMMDC1, encoding a Complex I assembly factor never involved before in corpus callosum defect; MRPS22, a protein of the small mitoribosomal subunit; and EARS2, the mitochondrial tRNA-glutamyl synthetase. The present report describes the antenatal histopathological findings in mitochondrial diseases and expands the genetic spectrum of antenatal corpus callosum anomalies establishing OXPHOS function as an important factor for corpus callosum biogenesis. We propose that, when observed, antenatal corpus callosum anomalies should raise suspicion of mitochondrial disease and prenatal genetic counselling should be considered.


Asunto(s)
Cuerpo Calloso , Enfermedades Mitocondriales , Humanos , Femenino , Embarazo , Cuerpo Calloso/patología , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Enfermedades Mitocondriales/genética , Mitocondrias/patología , Mutación , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales
2.
Prz Menopauzalny ; 23(1): 6-13, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38690070

RESUMEN

Introduction: Cervical cancer (CC) is a leading cause of mortality in women around the world, with the highest incidence rate still being in developing countries. The most common aetiological factor is infection with high-risk human papilloma virus viral strains. Oxidative stress through generation of reactive oxygen species leads to lipid peroxidation and DNA damage. Studies show that reactive lipid electrophiles such as 4-hydroxynonenal (4-HNE) produced in the process play an important role in cancer signalling pathways and are a good biomarker for oxidative stress. We aim to investigate the prognostic role of 4-HNE as a biomarker for oxidative stress in patients in early and advanced stages of CC measured by immunohistochemistry. Material and methods: This is a retrospective study of 69 patients treated at our Department of Oncogynaecology. Paraffin embedded tumour tissues were immunohistochemically tested for the levels of expression of 4-HNE. The results for H-score, Allred score, and combined score were investigated for association with tumour size, lymph node status, andInternational Federation of Gynaecology and Obstetrics stage. Results: 4-hydroxynonenal showed higher expression in more advanced stages of CC and in cases with involved lymph nodes. Tumour size was not associated with the levels of 4-HNE. Conclusions: To best of our knowledge, this is the first study to use immunohistochemistry to examine the expression of 4-HNE as a prognostic factor in CC. The 3 score systems showed similar results. The pattern of 4-HNE histological appearance is dependent on the histological origin of cancer and is not universal.

3.
Hum Mol Genet ; 28(9): 1445-1462, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30566640

RESUMEN

Mitochondria contain a dedicated translation system, which is responsible for the intramitochondrial synthesis of 13 mitochondrial DNA (mtDNA)-encoded polypeptides essential for the biogenesis of oxidative phosphorylation (OXPHOS) complexes I and III-V. Mutations in nuclear genes encoding factors involved in mitochondrial translation result in isolated or multiple OXPHOS deficiencies and mitochondrial disease. Here, we report the identification of disease-causing variants in the MRPS28 gene, encoding the small mitoribosomal subunit (mtSSU) protein bS1m in a patient with intrauterine growth retardation, craniofacial dysmorphism and developmental delay. Whole exome sequencing helped identify a seemingly homozygous missense variant NM_014018.2:c.356A>G, p.(Lys119Arg) which affected a highly conserved lysine residue. The variant was present in the mother in a heterozygous state, but not in the father who likely carried a large deletion spanning exon 2 and parts of introns 1 and 2 that could account for the apparent homozygosity of the patient. Polymerase chain reaction (PCR) amplification and Sanger sequencing of MRPS28 cDNA from patient fibroblasts revealed the presence of a truncated MRPS28 transcript, which lacked exon 2. Molecular and biochemical characterization of patient fibroblasts revealed a decrease in the abundance of the bS1m protein, decreased abundance of assembled mtSSU and inhibited mitochondrial translation. Consequently, OXPHOS biogenesis and cellular respiration were compromised in these cells. Expression of wild-type MRPS28 restored mitoribosomal assembly, mitochondrial translation and OXPHOS biogenesis, thereby demonstrating the deleterious nature of the identified MRPS28 variants. Thus, MRPS28 joins the increasing number of nuclear genes encoding mitoribosomal structural proteins linked to mitochondrial disease.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Retardo del Crecimiento Fetal/diagnóstico , Retardo del Crecimiento Fetal/genética , Proteínas Mitocondriales/genética , Mutación , Subunidades de Proteína/genética , Proteínas Ribosómicas/genética , Alelos , Secuencia de Aminoácidos , Respiración de la Célula/genética , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Análisis Mutacional de ADN , Femenino , Fibroblastos/metabolismo , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Fenotipo , Biosíntesis de Proteínas , Conformación Proteica , Proteínas Ribosómicas/química , Relación Estructura-Actividad , Secuenciación del Exoma
4.
Am J Hum Genet ; 102(2): 266-277, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395073

RESUMEN

Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous condition characterized by progressive dystonia with iron accumulation in the basal ganglia. How NBIA-associated mutations trigger iron overload remains poorly understood. After studying fibroblast cell lines from subjects carrying both known and unreported biallelic mutations in CRAT and REPS1, we ascribe iron overload to the abnormal recycling of transferrin receptor (TfR1) and the reduction of TfR1 palmitoylation in NBIA. Moreover, we describe palmitoylation as a hitherto unreported level of post-translational TfR1 regulation. A widely used antimalarial agent, artesunate, rescued abnormal TfR1 palmitoylation in cultured fibroblasts of NBIA subjects. These observations suggest therapeutic strategies aimed at targeting impaired TfR1 recycling and palmitoylation in NBIA.


Asunto(s)
Encéfalo/patología , Endocitosis , Hierro/metabolismo , Lipoilación , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Receptores de Transferrina/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al Calcio , Proteínas Portadoras/genética , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Mutación/genética , Receptores de Transferrina/química , Receptores de Transferrina/genética , Transferrina/metabolismo
5.
Am J Hum Genet ; 102(4): 685-695, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576219

RESUMEN

Biogenesis of the mitochondrial oxidative phosphorylation system, which produces the bulk of ATP for almost all eukaryotic cells, depends on the translation of 13 mtDNA-encoded polypeptides by mitochondria-specific ribosomes in the mitochondrial matrix. These mitoribosomes are dual-origin ribonucleoprotein complexes, which contain mtDNA-encoded rRNAs and tRNAs and ∼80 nucleus-encoded proteins. An increasing number of gene mutations that impair mitoribosomal function and result in multiple OXPHOS deficiencies are being linked to human mitochondrial diseases. Using exome sequencing in two unrelated subjects presenting with sensorineural hearing impairment, mild developmental delay, hypoglycemia, and a combined OXPHOS deficiency, we identified mutations in the gene encoding the mitochondrial ribosomal protein S2, which has not previously been implicated in disease. Characterization of subjects' fibroblasts revealed a decrease in the steady-state amounts of mutant MRPS2, and this decrease was shown by complexome profiling to prevent the assembly of the small mitoribosomal subunit. In turn, mitochondrial translation was inhibited, resulting in a combined OXPHOS deficiency detectable in subjects' muscle and liver biopsies as well as in cultured skin fibroblasts. Reintroduction of wild-type MRPS2 restored mitochondrial translation and OXPHOS assembly. The combination of lactic acidemia, hypoglycemia, and sensorineural hearing loss, especially in the presence of a combined OXPHOS deficiency, should raise suspicion for a ribosomal-subunit-related mitochondrial defect, and clinical recognition could allow for a targeted diagnostic approach. The identification of MRPS2 as an additional gene related to mitochondrial disease further expands the genetic and phenotypic spectra of OXPHOS deficiencies caused by impaired mitochondrial translation.


Asunto(s)
Alelos , Pérdida Auditiva Sensorineural/genética , Hipoglucemia/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación/genética , Proteínas Ribosómicas/genética , Secuencia de Aminoácidos , Preescolar , Análisis Mutacional de ADN , ADN Mitocondrial/genética , Femenino , Fibroblastos/metabolismo , Pérdida Auditiva Sensorineural/complicaciones , Humanos , Hipoglucemia/complicaciones , Lactante , Recién Nacido , Masculino , Enfermedades Mitocondriales/complicaciones , Proteínas Mitocondriales/química , Fosforilación Oxidativa , Subunidades de Proteína/genética , ARN Ribosómico/genética , Proteínas Ribosómicas/química
6.
Mol Genet Metab ; 134(3): 267-273, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34620555

RESUMEN

Most mitochondrial proteins are synthesized in the cytosol and targeted to mitochondria via N-terminal mitochondrial targeting signals (MTS) that are proteolytically removed upon import. Sometimes, MTS removal is followed by a cleavage of an octapeptide by the mitochondrial intermediate peptidase (MIP), encoded by the MIPEP gene. Previously, MIPEP variants were linked to four cases of multisystemic disorder presenting with cardiomyopathy, developmental delay, hypotonia and infantile lethality. We report here a patient carrying compound heterozygous MIPEP variants-one was not previously linked to mitochondrial disease-who did not have cardiomyopathy and who is alive at the age of 20 years. This patient had developmental delay, global hypotonia, mild optic neuropathy and mild ataxia. Functional characterization of patient fibroblasts and HEK293FT cells carrying MIPEP hypomorphic alleles demonstrated that deficient MIP activity was linked to impaired post-import processing of subunits from four of the five OXPHOS complexes and decreased abundance and activity of some of these complexes in human cells possibly underlying the development of mitochondrial disease. Thus, our work expands the genetic and clinical spectrum of MIPEP-linked disease and establishes MIP as an important regulator of OXPHOS biogenesis and function in human cells.


Asunto(s)
Cardiomiopatías/fisiopatología , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Enfermedades Mitocondriales/genética , Fenotipo , Alelos , Fibroblastos/metabolismo , Expresión Génica , Células HEK293 , Humanos , Masculino , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/fisiopatología , Mutación , Adulto Joven
7.
Hum Mutat ; 41(2): 397-402, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31680380

RESUMEN

Pathogenic GFM1 variants have been linked to neurological phenotypes with or without liver involvement, but only a few cases have been reported in the literature. Here, we report clinical, biochemical, and neuroimaging findings from nine unrelated children carrying GFM1 variants, 10 of which were not previously reported. All patients presented with neurological involvement-mainly axial hypotonia and dystonia during the neonatal period-with five diagnosed with West syndrome; two children had liver involvement with cytolysis episodes or hepatic failure. While two patients died in infancy, six exhibited a stable clinical course. Brain magnetic resonance imaging showed the involvement of basal ganglia, brainstem, and periventricular white matter. Mutant EFG1 and OXPHOS proteins were decreased in patient's fibroblasts consistent with impaired mitochondrial translation. Thus, we expand the genetic spectrum of GFM1-linked disease and provide detailed clinical profiles of the patients that will improve the diagnostic success for other patients carrying GFM1 mutations.


Asunto(s)
Fibroblastos/metabolismo , Regulación de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas Mitocondriales/genética , Mutación , Neuroimagen , Factor G de Elongación Peptídica/genética , Alelos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Bases de Datos Genéticas , Femenino , Estudios de Asociación Genética/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Mitocondrias/genética , Neuroimagen/métodos , Linaje
8.
Am J Hum Genet ; 101(2): 239-254, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28777931

RESUMEN

The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32∗]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease.


Asunto(s)
ADN Mitocondrial/genética , Enfermedad de Leigh/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Lactante , Enfermedad de Leigh/enzimología , Masculino , Mitocondrias/genética , Fosforilación Oxidativa , Proteómica , Empalme del ARN/genética , Análisis de Secuencia de ADN
9.
Environ Microbiol ; 22(5): 1870-1883, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32090431

RESUMEN

In cold marine environments, the obligate hydrocarbon-degrading psychrophile Oleispira antarctica RB-8, which utilizes aliphatic alkanes almost exclusively as substrates, dominates microbial communities following oil spills. In this study, LC-MS/MS shotgun proteomics was used to identify changes in the proteome induced during growth on n-alkanes and in cold temperatures. Specifically, proteins with significantly higher relative abundance during growth on tetradecane (n-C14 ) at 16°C and 4°C have been quantified. During growth on n-C14 , O. antarctica expressed a complete pathway for the terminal oxidation of n-alkanes including two alkane monooxygenases, two alcohol dehydrogenases, two aldehyde dehydrogenases, a fatty-acid-CoA ligase, a fatty acid desaturase and associated oxidoreductases. Increased biosynthesis of these proteins ranged from 3- to 21-fold compared with growth on a non-hydrocarbon control. This study also highlights mechanisms O. antarctica may utilize to provide it with ecological competitiveness at low temperatures. This was evidenced by an increase in spectral counts for proteins involved in flagella structure/output to overcome higher viscosity, flagella rotation to accumulate cells and proline metabolism to counteract oxidative stress, during growth at 4°C compared with 16°C. Such species-specific understanding of the physiology during hydrocarbon degradation can be important for parameterizing models that predict the fate of marine oil spills.


Asunto(s)
Alcanos/metabolismo , Biodegradación Ambiental , Oceanospirillaceae/metabolismo , Contaminación por Petróleo , Cromatografía Liquida , Frío , Citocromo P-450 CYP4A/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Oceanospirillaceae/genética , Oceanospirillaceae/crecimiento & desarrollo , Oxidación-Reducción , Oxidorreductasas/genética , Filogenia , Proteómica , Agua de Mar/microbiología , Espectrometría de Masas en Tándem
10.
Am J Hum Genet ; 99(1): 208-16, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27374773

RESUMEN

Mitochondrial complex I deficiency results in a plethora of often severe clinical phenotypes manifesting in early childhood. Here, we report on three complex-I-deficient adult subjects with relatively mild clinical symptoms, including isolated, progressive exercise-induced myalgia and exercise intolerance but with normal later development. Exome sequencing and targeted exome sequencing revealed compound-heterozygous mutations in TMEM126B, encoding a complex I assembly factor. Further biochemical analysis of subject fibroblasts revealed a severe complex I deficiency caused by defective assembly. Lentiviral complementation with the wild-type cDNA restored the complex I deficiency, demonstrating the pathogenic nature of these mutations. Further complexome analysis of one subject indicated that the complex I assembly defect occurred during assembly of its membrane module. Our results show that TMEM126B defects can lead to complex I deficiencies and, interestingly, that symptoms can occur only after exercise.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Debilidad Muscular/genética , Mutación , Adolescente , Adulto , Niño , Complejo I de Transporte de Electrón/genética , Ejercicio Físico , Exoma/genética , Prueba de Complementación Genética , Heterocigoto , Humanos , Lactante , Masculino , Adulto Joven
11.
Am J Hum Genet ; 98(5): 993-1000, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27132592

RESUMEN

Mitochondrial disorders are clinically and genetically diverse, with mutations in mitochondrial or nuclear genes able to cause defects in mitochondrial gene expression. Recently, mutations in several genes encoding factors involved in mt-tRNA processing have been identified to cause mitochondrial disease. Using whole-exome sequencing, we identified mutations in TRMT10C (encoding the mitochondrial RNase P protein 1 [MRPP1]) in two unrelated individuals who presented at birth with lactic acidosis, hypotonia, feeding difficulties, and deafness. Both individuals died at 5 months after respiratory failure. MRPP1, along with MRPP2 and MRPP3, form the mitochondrial ribonuclease P (mt-RNase P) complex that cleaves the 5' ends of mt-tRNAs from polycistronic precursor transcripts. Additionally, a stable complex of MRPP1 and MRPP2 has m(1)R9 methyltransferase activity, which methylates mt-tRNAs at position 9 and is vital for folding mt-tRNAs into their correct tertiary structures. Analyses of fibroblasts from affected individuals harboring TRMT10C missense variants revealed decreased protein levels of MRPP1 and an increase in mt-RNA precursors indicative of impaired mt-RNA processing and defective mitochondrial protein synthesis. The pathogenicity of the detected variants-compound heterozygous c.542G>T (p.Arg181Leu) and c.814A>G (p.Thr272Ala) changes in subject 1 and a homozygous c.542G>T (p.Arg181Leu) variant in subject 2-was validated by the functional rescue of mt-RNA processing and mitochondrial protein synthesis defects after lentiviral transduction of wild-type TRMT10C. Our study suggests that these variants affect MRPP1 protein stability and mt-tRNA processing without affecting m(1)R9 methyltransferase activity, identifying mutations in TRMT10C as a cause of mitochondrial disease and highlighting the importance of RNA processing for correct mitochondrial function.


Asunto(s)
Genes Recesivos/genética , Metiltransferasas/genética , Enfermedades Mitocondriales/etiología , Mutación/genética , Procesamiento Postranscripcional del ARN/genética , ARN/genética , Ribonucleasa P/genética , Secuencia de Aminoácidos , Transporte de Electrón/genética , Femenino , Humanos , Recién Nacido , Masculino , Mitocondrias/metabolismo , Enfermedades Mitocondriales/patología , Linaje , Biosíntesis de Proteínas/fisiología , ARN/metabolismo , ARN Mitocondrial , ARN de Transferencia/genética , Homología de Secuencia de Aminoácido
12.
Environ Microbiol ; 21(7): 2347-2359, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30951249

RESUMEN

Alcanivorax borkumensis SK2T is an important obligate hydrocarbonoclastic bacterium (OHCB) that can dominate microbial communities following marine oil spills. It possesses the ability to degrade branched alkanes which provides it a competitive advantage over many other marine alkane degraders that can only degrade linear alkanes. We used LC-MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on linear (n-C14 ) or branched (pristane) alkanes. During growth on n-C14 , A. borkumensis expressed a complete pathway for the terminal oxidation of n-alkanes to their corresponding acyl-CoA derivatives including AlkB and AlmA, two CYP153 cytochrome P450s, an alcohol dehydrogenase and an aldehyde dehydrogenase. In contrast, during growth on pristane, an alternative alkane degradation pathway was expressed including a different cytochrome P450, an alcohol oxidase and an alcohol dehydrogenase. A. borkumensis also expressed a different set of enzymes for ß-oxidation of the resultant fatty acids depending on the growth substrate utilized. This study significantly enhances our understanding of the fundamental physiology of A. borkumensis SK2T by identifying the key enzymes expressed and involved in terminal oxidation of both linear and branched alkanes. It has also highlights the differential expression of sets of ß-oxidation proteins to overcome steric hinderance from branched substrates.


Asunto(s)
Alcanivoraceae/enzimología , Alcanivoraceae/metabolismo , Alcanos/metabolismo , Alcanivoraceae/crecimiento & desarrollo , Alcohol Deshidrogenasa/genética , Oxidorreductasas de Alcohol/genética , Biodegradación Ambiental , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/genética , Ácidos Grasos/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Terpenos/metabolismo
13.
J Med Genet ; 55(6): 378-383, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29358270

RESUMEN

BACKGROUND: Because the mitochondrial respiratory chain (RC) is ubiquitous, its deficiency can theoretically give rise to any symptom in any organ or tissue at any age with any mode of inheritance, owing to the twofold genetic origin of respiratory enzyme machinery, that is, nuclear and mitochondrial. Not all respiratory enzyme deficiencies are primary and secondary or artefactual deficiency is frequently observed, leading to a number of misleading conclusions and inappropriate investigations in clinical practice. This study is aimed at investigating the potential role of brain MRI in distinguishing primary RC deficiency from phenocopies and other aetiologies. METHODS: Starting from a large series of 189 patients (median age: 3.5 years (8 days-56 years), 58% males) showing signs of RC enzyme deficiency, for whom both brain MRIs and disease-causing mutations were available, we retrospectively studied the positive predictive value (PPV) and the positive likelihood ratio (LR+) of brain MRI imaging and its ability to discriminate between two groups: primary deficiency of the mitochondrial RC machinery and phenocopies. RESULTS: Detection of (1) brainstem hyperintensity with basal ganglia involvement (P≤0.001) and (2) lactate peak with either brainstem or basal ganglia hyperintensity was highly suggestive of primary RC deficiency (P≤0.01). Fourteen items had a PPV>95% and LR+ was greater than 9 for seven signs. Biallelic SLC19A3 mutations represented the main differential diagnosis. Non-significant differences between the two groups were found for cortical/subcortical atrophy, leucoencephalopathy and involvement of caudate nuclei, spinothalamic tract and corpus callosum. CONCLUSION: Based on these results and owing to invasiveness of skeletal muscle biopsies and cost of high-throughput DNA sequencing, we suggest giving consideration to brain MRI imaging as a diagnostic marker and an informative investigation to be performed in patients showing signs of RC enzyme deficiency.


Asunto(s)
Atrofia/diagnóstico , Encéfalo/diagnóstico por imagen , Diagnóstico Diferencial , Enfermedades Mitocondriales/diagnóstico , Adolescente , Adulto , Atrofia/diagnóstico por imagen , Atrofia/fisiopatología , Encéfalo/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/patología , Valor Predictivo de las Pruebas , Adulto Joven
14.
Hum Mutat ; 39(12): 2047-2059, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30252186

RESUMEN

Aminoacyl-tRNA synthetases are ubiquitous enzymes, which universally charge tRNAs with their cognate amino acids for use in cytosolic or organellar translation. In humans, mutations in mitochondrial tRNA synthetases have been linked to different tissue-specific pathologies. Mutations in the KARS gene, which encodes both the cytosolic and mitochondrial isoform of lysyl-tRNA synthetase, cause predominantly neurological diseases that often involve deafness, but have also been linked to cardiomyopathy, developmental delay, and lactic acidosis. Using whole exome sequencing, we identified two compound heterozygous mutations, NM_001130089.1:c.683C>T p.(Pro228Leu) and NM_001130089.1:c.1438del p.(Leu480TrpfsX3), in a patient presenting with sensorineural deafness, developmental delay, hypotonia, and lactic acidosis. Nonsense-mediated mRNA decay eliminated the truncated mRNA transcript, rendering the patient hemizygous for the missense mutation. The c.683C>T mutation was previously described, but its pathogenicity remained unexamined. Molecular characterization of patient fibroblasts revealed a multiple oxidative phosphorylation deficiency due to impaired mitochondrial translation, but no evidence of inhibition of cytosolic translation. Reintroduction of wild-type mitochondrial KARS, but not the cytosolic isoform, rescued this phenotype confirming the disease-causing nature of p.(Pro228Leu) exchange and demonstrating the mitochondrial etiology of the disease. We propose that mitochondrial translation deficiency is the probable disease culprit in this and possibly other patients with mutations in KARS.


Asunto(s)
Acidosis Láctica/genética , Discapacidades del Desarrollo/genética , Fibroblastos/metabolismo , Pérdida Auditiva Sensorineural/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Acidosis Láctica/metabolismo , Discapacidades del Desarrollo/metabolismo , Femenino , Fibroblastos/citología , Células HEK293 , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Lactante , Mitocondrias/metabolismo , Fosforilación Oxidativa , Linaje , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Estabilidad del ARN , Secuenciación del Exoma/métodos
15.
Hum Mol Genet ; 25(R2): R115-R122, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27329762

RESUMEN

Mitochondrial diseases are heterogeneous and incurable conditions typically resulting from deficient ATP production in the cells. Mice, owing to their genetic and physiological similarity to humans as well as their relatively easy maintenance and propagation, are extremely valuable for studying mitochondrial diseases and are also indispensable for the preclinical evaluation of novel therapies for these devastating conditions. Here, we review the recent exciting developments in the field focusing on mouse models for mitochondrial disease genes although models for genes not involved in the pathogenesis of mitochondrial disease and therapeutic proof-of-concept studies using mouse models are also discussed.

16.
Hum Mol Genet ; 24(25): 7286-94, 2015 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-26464487

RESUMEN

Mitochondrial dysfunction is a well-established cause of sensorineural deafness, but the pathophysiological events are poorly understood. Non-syndromic deafness and predisposition to aminoglycoside-induced deafness can be caused by specific mutations in the 12S rRNA gene of mtDNA and are thus maternally inherited traits. The pathophysiology induced by mtDNA mutations has traditionally been attributed to deficient oxidative phosphorylation, which causes energy crisis with functional impairment of multiple cellular processes. In contrast, it was recently reported that signaling induced by 'hypermethylation' of two conserved adenosines of 12S rRNA in the mitoribosome is of key pathophysiological importance in sensorineural deafness. In support for this concept, it was reported that overexpression of the essential mitochondrial methyltransferase TFB1M in the mouse was sufficient to induce mitoribosomal hypermethylation and deafness. At variance with this model, we show here that 12S rRNA is near fully methylated in vivo in the mouse and thus cannot be further methylated to any significant extent. Furthermore, bacterial artificial chromosome transgenic mice overexpressing TFB1M have no increase of 12S rRNA methylation levels and hear normally. We thus conclude that therapies directed against mitoribosomal methylation are unlikely to be beneficial to patients with sensorineural hearing loss or other types of mitochondrial disease.


Asunto(s)
ADN Mitocondrial/genética , Audición/genética , Ribosomas Mitocondriales/metabolismo , Factores de Transcripción/genética , Animales , Sordera/genética , Femenino , Pérdida Auditiva Sensorineural/inducido químicamente , Pérdida Auditiva Sensorineural/genética , Masculino , Metilación , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Mutación Puntual/genética , ARN Ribosómico/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Am J Hum Genet ; 95(6): 708-20, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25434004

RESUMEN

Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.


Asunto(s)
Acidosis Láctica/genética , Encefalopatías/genética , Cardiomiopatía Hipertrófica/genética , Proteínas de Unión al GTP/genética , Procesamiento Proteico-Postraduccional , Acidosis Láctica/fisiopatología , Secuencia de Aminoácidos , Encéfalo/patología , Encefalopatías/fisiopatología , Cardiomiopatía Hipertrófica/fisiopatología , Línea Celular , Niño , Preescolar , Consanguinidad , Femenino , Fibroblastos , Proteínas de Unión al GTP/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Biosíntesis de Proteínas , Interferencia de ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Alineación de Secuencia
18.
J Exp Bot ; 68(14): 3891-3902, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28520898

RESUMEN

Carbon-concentrating mechanisms (CCMs) enable efficient photosynthesis and growth in CO2-limiting environments, and in eukaryotic microalgae localisation of Rubisco to a microcompartment called the pyrenoid is key. In the model green alga Chlamydomonas reinhardtii, Rubisco preferentially relocalises to the pyrenoid during CCM induction and pyrenoid-less mutants lack a functioning CCM and grow very poorly at low CO2. The aim of this study was to investigate the CO2 response of pyrenoid-positive (pyr+) and pyrenoid-negative (pyr-) mutant strains to determine the effect of pyrenoid absence on CCM induction and gene expression. Shotgun proteomic analysis of low-CO2-adapted strains showed reduced accumulation of some CCM-related proteins, suggesting that pyr- has limited capacity to respond to low-CO2 conditions. Comparisons between gene transcription and protein expression revealed potential regulatory interactions, since Rubisco protein linker (EPYC1) protein did not accumulate in pyr- despite increased transcription, while elements of the LCIB/LCIC complex were also differentially expressed. Furthermore, pyr- showed altered abundance of a number of proteins involved in primary metabolism, perhaps due to the failure to adapt to low CO2. This work highlights two-way regulation between CCM induction and pyrenoid formation, and provides novel candidates for future studies of pyrenoid assembly and CCM function.


Asunto(s)
Proteínas Algáceas/genética , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Expresión Génica , Fotosíntesis , Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
19.
PLoS Genet ; 10(2): e1004110, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516400

RESUMEN

Biogenesis of mammalian mitochondrial ribosomes requires a concerted maturation of both the small (SSU) and large subunit (LSU). We demonstrate here that the m(5)C methyltransferase NSUN4, which forms a complex with MTERF4, is essential in mitochondrial ribosomal biogenesis as mitochondrial translation is abolished in conditional Nsun4 mouse knockouts. Deep sequencing of bisulfite-treated RNA shows that NSUN4 methylates cytosine 911 in 12S rRNA (m5C911) of the SSU. Surprisingly, NSUN4 does not need MTERF4 to generate this modification. Instead, the NSUN4/MTERF4 complex is required to assemble the SSU and LSU to form a monosome. NSUN4 is thus a dual function protein, which on the one hand is needed for 12S rRNA methylation and, on the other hand interacts with MTERF4 to facilitate monosome assembly. The presented data suggest that NSUN4 has a key role in controlling a final step in ribosome biogenesis to ensure that only the mature SSU and LSU are assembled.


Asunto(s)
Proteínas Portadoras/genética , Metiltransferasas/genética , Mitocondrias/genética , ARN Ribosómico/genética , Ribosomas/genética , Animales , Proteínas Portadoras/metabolismo , Metilación de ADN/genética , Metiltransferasas/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Unión Proteica , ARN Ribosómico/biosíntesis , Ribosomas/ultraestructura , Factores de Transcripción/metabolismo
20.
Hum Mol Genet ; 23(21): 5733-49, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24916378

RESUMEN

We have previously identified transcription factor B1 mitochondrial (TFB1M) as a type 2 diabetes (T2D) risk gene, using human and mouse genetics. To further understand the function of TFB1M and how it is associated with T2D, we created a ß-cell-specific knockout of Tfb1m, which gradually developed diabetes. Prior to the onset of diabetes, ß-Tfb1m(-/-) mice exhibited retarded glucose clearance owing to impaired insulin secretion. ß-Tfb1m(-/-) islets released less insulin in response to fuels, contained less insulin and secretory granules and displayed reduced ß-cell mass. Moreover, mitochondria in Tfb1m-deficient ß-cells were more abundant with disrupted architecture. TFB1M is known to control mitochondrial protein translation by adenine dimethylation of 12S ribosomal RNA (rRNA). Here, we found that the levels of TFB1M and mitochondrial-encoded proteins, mitochondrial 12S rRNA methylation, ATP production and oxygen consumption were reduced in ß-Tfb1m(-/-) islets. Furthermore, the levels of reactive oxygen species (ROS) in response to cellular stress were increased whereas induction of defense mechanisms was attenuated. We also show increased apoptosis and necrosis as well as infiltration of macrophages and CD4(+) cells in the islets. Taken together, our findings demonstrate that Tfb1m-deficiency in ß-cells caused mitochondrial dysfunction and subsequently diabetes owing to combined loss of ß-cell function and mass. These observations reflect pathogenetic processes in human islets: using RNA sequencing, we found that the TFB1M risk variant exhibited a negative gene-dosage effect on islet TFB1M mRNA levels, as well as insulin secretion. Our findings highlight the role of mitochondrial dysfunction in impairments of ß-cell function and mass, the hallmarks of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Insulina/biosíntesis , Mitocondrias/genética , Mitocondrias/metabolismo , Factores de Transcripción/genética , Animales , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Inflamación/genética , Inflamación/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/ultraestructura , Estrés Oxidativo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA