Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Neuroimage ; 297: 120696, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909761

RESUMEN

How is information processed in the cerebral cortex? In most cases, recorded brain activity is averaged over many (stimulus) repetitions, which erases the fine-structure of the neural signal. However, the brain is obviously a single-trial processor. Thus, we here demonstrate that an unsupervised machine learning approach can be used to extract meaningful information from electro-physiological recordings on a single-trial basis. We use an auto-encoder network to reduce the dimensions of single local field potential (LFP) events to create interpretable clusters of different neural activity patterns. Strikingly, certain LFP shapes correspond to latency differences in different recording channels. Hence, LFP shapes can be used to determine the direction of information flux in the cerebral cortex. Furthermore, after clustering, we decoded the cluster centroids to reverse-engineer the underlying prototypical LFP event shapes. To evaluate our approach, we applied it to both extra-cellular neural recordings in rodents, and intra-cranial EEG recordings in humans. Finally, we find that single channel LFP event shapes during spontaneous activity sample from the realm of possible stimulus evoked event shapes. A finding which so far has only been demonstrated for multi-channel population coding.

2.
Neural Comput ; 36(3): 351-384, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363658

RESUMEN

Free-running recurrent neural networks (RNNs), especially probabilistic models, generate an ongoing information flux that can be quantified with the mutual information I[x→(t),x→(t+1)] between subsequent system states x→. Although previous studies have shown that I depends on the statistics of the network's connection weights, it is unclear how to maximize I systematically and how to quantify the flux in large systems where computing the mutual information becomes intractable. Here, we address these questions using Boltzmann machines as model systems. We find that in networks with moderately strong connections, the mutual information I is approximately a monotonic transformation of the root-mean-square averaged Pearson correlations between neuron pairs, a quantity that can be efficiently computed even in large systems. Furthermore, evolutionary maximization of I[x→(t),x→(t+1)] reveals a general design principle for the weight matrices enabling the systematic construction of systems with a high spontaneous information flux. Finally, we simultaneously maximize information flux and the mean period length of cyclic attractors in the state-space of these dynamical networks. Our results are potentially useful for the construction of RNNs that serve as short-time memories or pattern generators.

3.
Brain ; 146(12): 4809-4825, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37503725

RESUMEN

Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.


Asunto(s)
Pérdida Auditiva , Acúfeno , Humanos , Acúfeno/psicología , Teorema de Bayes , Inteligencia Artificial , Percepción Auditiva , Vías Auditivas
4.
Nat Methods ; 13(2): 171-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26641311

RESUMEN

We describe a technique for the quantitative measurement of cell-generated forces in highly nonlinear three-dimensional biopolymer networks that mimic the physiological situation of living cells. We computed forces of MDA-MB-231 breast carcinoma cells from the measured network deformations around the cells using a finite-element approach based on a constitutive equation that captures the complex mechanical properties of diverse biopolymers such as collagen gels, fibrin gels and Matrigel. Our measurements show that breast carcinoma cells cultured in collagen gels generated nearly constant forces regardless of the collagen concentration and matrix stiffness. Furthermore, time-lapse force measurements showed that these cells migrated in a gliding motion with alternating phases of high and low contractility, elongation, migratory speed and persistence.


Asunto(s)
Biopolímeros/química , Neoplasias de la Mama , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Microscopía de Fuerza Atómica/instrumentación , Microscopía de Fuerza Atómica/métodos , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Humanos
5.
J Phys D Appl Phys ; 51(30)2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30906071

RESUMEN

The growth of cell colonies is determined by the migration and proliferation of the individual cells. This is often modeled with the Fisher-Kolmogorov (FK) equation, which assumes that cells diffuse independently from each other, but stop to proliferate when their density reaches a critial limit. However, when using measured, cell-line specific parameters, we find that the FK equation drastically underestimates the experimentally observed increase of colony radius with time. Moreover, cells in real colonies migrate radially outward with superdiffusive trajectories, in contrast to the assumption of random diffusion. We demonstrate that both dicrepancies can be resolved by assuming that cells in dense colonies are driven apart by repulsive, pressure-like forces. Using this model of proliferating repelling particles (PRP), we find that colony growth exhibits different dynamical regimes, depending on the ratio between a pressure-related equilibrium cell density and the critial density of proliferation arrest.

6.
Biophys J ; 112(7): 1472-1480, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28402889

RESUMEN

We describe a quantitative, high-precision, high-throughput method for measuring the mechanical properties of cells in suspension with a microfluidic device, and for relating cell mechanical responses to protein expression levels. Using a high-speed (750 fps) charge-coupled device camera, we measure the driving pressure Δp, maximum cell deformation εmax, and entry time tentry of cells in an array of microconstrictions. From these measurements, we estimate population averages of elastic modulus E and fluidity ß (the power-law exponent of the cell deformation in response to a step change in pressure). We find that cell elasticity increases with increasing strain εmax according to E ∼ εmax, and with increasing pressure according to E ∼ Δp. Variable cell stress due to driving pressure fluctuations and variable cell strain due to cell size fluctuations therefore cause significant variability between measurements. To reduce measurement variability, we use a histogram matching method that selects and analyzes only those cells from different measurements that have experienced the same pressure and strain. With this method, we investigate the influence of measurement parameters on the resulting cell elastic modulus and fluidity. We find a small but significant softening of cells with increasing time after cell harvesting. Cells harvested from confluent cultures are softer compared to cells harvested from subconfluent cultures. Moreover, cell elastic modulus increases with decreasing concentration of the adhesion-reducing surfactant pluronic. Lastly, we simultaneously measure cell mechanics and fluorescence signals of cells that overexpress the GFP-tagged nuclear envelope protein lamin A. We find a dose-dependent increase in cell elastic modulus and decrease in cell fluidity with increasing lamin A levels. Together, our findings demonstrate that histogram matching of pressure, strain, and protein expression levels greatly reduces the variability between measurements and enables us to reproducibly detect small differences in cell mechanics.


Asunto(s)
Células/metabolismo , Microtecnología/métodos , Fenómenos Biomecánicos , Células Cultivadas , Humanos , Células K562 , Dispositivos Laboratorio en un Chip , Poloxámero/farmacología , Reproducibilidad de los Resultados , Estrés Mecánico , Factores de Tiempo , Tripsina/metabolismo
7.
Biophys J ; 109(5): 900-13, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26331248

RESUMEN

In cancer metastasis and other physiological processes, cells migrate through the three-dimensional (3D) extracellular matrix of connective tissue and must overcome the steric hindrance posed by pores that are smaller than the cells. It is currently assumed that low cell stiffness promotes cell migration through confined spaces, but other factors such as adhesion and traction forces may be equally important. To study 3D migration under confinement in a stiff (1.77 MPa) environment, we use soft lithography to fabricate polydimethylsiloxane (PDMS) devices consisting of linear channel segments with 20 µm length, 3.7 µm height, and a decreasing width from 11.2 to 1.7 µm. To study 3D migration in a soft (550 Pa) environment, we use self-assembled collagen networks with an average pore size of 3 µm. We then measure the ability of four different cancer cell lines to migrate through these 3D matrices, and correlate the results with cell physical properties including contractility, adhesiveness, cell stiffness, and nuclear volume. Furthermore, we alter cell adhesion by coating the channel walls with different amounts of adhesion proteins, and we increase cell stiffness by overexpression of the nuclear envelope protein lamin A. Although all cell lines are able to migrate through the smallest 1.7 µm channels, we find significant differences in the migration velocity. Cell migration is impeded in cell lines with larger nuclei, lower adhesiveness, and to a lesser degree also in cells with lower contractility and higher stiffness. Our data show that the ability to overcome the steric hindrance of the matrix cannot be attributed to a single cell property but instead arises from a combination of adhesiveness, nuclear volume, contractility, and cell stiffness.


Asunto(s)
Movimiento Celular , Tamaño del Núcleo Celular , Fenómenos Mecánicos , Fenómenos Biomecánicos , Adhesión Celular , Línea Celular Tumoral , Colágeno/metabolismo , Humanos , Porosidad
8.
Biophys J ; 105(9): 1967-75, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24209841

RESUMEN

The pore size of biopolymer networks governs their mechanical properties and strongly impacts the behavior of embedded cells. Confocal reflection microscopy and second harmonic generation microscopy are widely used to image biopolymer networks; however, both techniques fail to resolve vertically oriented fibers. Here, we describe how such directionally biased data can be used to estimate the network pore size. We first determine the distribution of distances from random points in the fluid phase to the nearest fiber. This distribution follows a Rayleigh distribution, regardless of isotropy and data bias, and is fully described by a single parameter--the characteristic pore size of the network. The bias of the pore size estimate due to the missing fibers can be corrected by multiplication with the square root of the visible network fraction. We experimentally verify the validity of this approach by comparing our estimates with data obtained using confocal fluorescence microscopy, which represents the full structure of the network. As an important application, we investigate the pore size dependence of collagen and fibrin networks on protein concentration. We find that the pore size decreases with the square root of the concentration, consistent with a total fiber length that scales linearly with concentration.


Asunto(s)
Biopolímeros/química , Microscopía , Colágeno/química , Fibrina/química , Porosidad
9.
Neurobiol Sleep Circadian Rhythms ; 14: 100097, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37275555

RESUMEN

The human sleep-cycle has been divided into discrete sleep stages that can be recognized in electroencephalographic (EEG) and other bio-signals by trained specialists or machine learning systems. It is however unclear whether these human-defined stages can be re-discovered with unsupervised methods of data analysis, using only a minimal amount of generic pre-processing. Based on EEG data, recorded overnight from sleeping human subjects, we investigate the degree of clustering of the sleep stages using the General Discrimination Value as a quantitative measure of class separability. Virtually no clustering is found in the raw data, even after transforming the EEG signals of each 30-s epoch from the time domain into the more informative frequency domain. However, a Principal Component Analysis (PCA) of these epoch-wise frequency spectra reveals that the sleep stages separate significantly better in the low-dimensional sub-space of certain PCA components. In particular the component C1(t) can serve as a robust, continuous 'master variable' that encodes the depth of sleep and therefore correlates strongly with the 'hypnogram', a common plot of the discrete sleep stages over time. Moreover, C1(t) shows persistent trends during extended time periods where the sleep stage is constant, suggesting that sleep may be better understood as a continuum. These intriguing properties of C1(t) are not only relevant for understanding brain dynamics during sleep, but might also be exploited in low-cost single-channel sleep tracking devices for private and clinical use.

10.
Front Comput Neurosci ; 16: 876315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573264

RESUMEN

Recurrent neural networks (RNNs) are complex dynamical systems, capable of ongoing activity without any driving input. The long-term behavior of free-running RNNs, described by periodic, chaotic and fixed point attractors, is controlled by the statistics of the neural connection weights, such as the density d of non-zero connections, or the balance b between excitatory and inhibitory connections. However, for information processing purposes, RNNs need to receive external input signals, and it is not clear which of the dynamical regimes is optimal for this information import. We use both the average correlations C and the mutual information I between the momentary input vector and the next system state vector as quantitative measures of information import and analyze their dependence on the balance and density of the network. Remarkably, both resulting phase diagrams C(b, d) and I(b, d) are highly consistent, pointing to a link between the dynamical systems and the information-processing approach to complex systems. Information import is maximal not at the "edge of chaos," which is optimally suited for computation, but surprisingly in the low-density chaotic regime and at the border between the chaotic and fixed point regime. Moreover, we find a completely new type of resonance phenomenon, which we call "Import Resonance" (IR), where the information import shows a maximum, i.e., a peak-like dependence on the coupling strength between the RNN and its external input. IR complements previously found Recurrence Resonance (RR), where correlation and mutual information of successive system states peak for a certain amplitude of noise added to the system. Both IR and RR can be exploited to optimize information processing in artificial neural networks and might also play a crucial role in biological neural systems.

11.
Cogn Neurodyn ; 16(4): 941-960, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35847543

RESUMEN

The phenomenon of self-induced stochastic resonance (SISR) requires a nontrivial scaling limit between the deterministic and the stochastic timescales of an excitable system, leading to the emergence of coherent oscillations which are absent without noise. In this paper, we numerically investigate SISR and its control in single neurons and three-neuron motifs made up of the Morris-Lecar model. In single neurons, we compare the effects of electrical and chemical autapses on the degree of coherence of the oscillations due to SISR. In the motifs, we compare the effects of altering the synaptic time-delayed couplings and the topologies on the degree of SISR. Finally, we provide two enhancement strategies for a particularly poor degree of SISR in motifs with chemical synapses: (1) we show that a poor SISR can be significantly enhanced by attaching an electrical or an excitatory chemical autapse on one of the neurons, and (2) we show that by multiplexing the motif with a poor SISR to another motif (with a high SISR in isolation), the degree of SISR in the former motif can be significantly enhanced. We show that the efficiency of these enhancement strategies depends on the topology of the motifs and the nature of synaptic time-delayed couplings mediating the multiplexing connections.

12.
Front Neurosci ; 16: 908330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757533

RESUMEN

Noise is generally considered to harm information processing performance. However, in the context of stochastic resonance, noise has been shown to improve signal detection of weak sub- threshold signals, and it has been proposed that the brain might actively exploit this phenomenon. Especially within the auditory system, recent studies suggest that intrinsic noise plays a key role in signal processing and might even correspond to increased spontaneous neuronal firing rates observed in early processing stages of the auditory brain stem and cortex after hearing loss. Here we present a computational model of the auditory pathway based on a deep neural network, trained on speech recognition. We simulate different levels of hearing loss and investigate the effect of intrinsic noise. Remarkably, speech recognition after hearing loss actually improves with additional intrinsic noise. This surprising result indicates that intrinsic noise might not only play a crucial role in human auditory processing, but might even be beneficial for contemporary machine learning approaches.

13.
Sci Rep ; 12(1): 11233, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787659

RESUMEN

How does the mind organize thoughts? The hippocampal-entorhinal complex is thought to support domain-general representation and processing of structural knowledge of arbitrary state, feature and concept spaces. In particular, it enables the formation of cognitive maps, and navigation on these maps, thereby broadly contributing to cognition. It has been proposed that the concept of multi-scale successor representations provides an explanation of the underlying computations performed by place and grid cells. Here, we present a neural network based approach to learn such representations, and its application to different scenarios: a spatial exploration task based on supervised learning, a spatial navigation task based on reinforcement learning, and a non-spatial task where linguistic constructions have to be inferred by observing sample sentences. In all scenarios, the neural network correctly learns and approximates the underlying structure by building successor representations. Furthermore, the resulting neural firing patterns are strikingly similar to experimentally observed place and grid cell firing patterns. We conclude that cognitive maps and neural network-based successor representations of structured knowledge provide a promising way to overcome some of the short comings of deep learning towards artificial general intelligence.


Asunto(s)
Células de Red , Lenguaje , Cognición , Modelos Neurológicos , Redes Neurales de la Computación
14.
Sci Rep ; 12(1): 22121, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543849

RESUMEN

Data classification, the process of analyzing data and organizing it into categories or clusters, is a fundamental computing task of natural and artificial information processing systems. Both supervised classification and unsupervised clustering work best when the input vectors are distributed over the data space in a highly non-uniform way. These tasks become however challenging in weakly structured data sets, where a significant fraction of data points is located in between the regions of high point density. We derive the theoretical limit for classification accuracy that arises from this overlap of data categories. By using a surrogate data generation model with adjustable statistical properties, we show that sufficiently powerful classifiers based on completely different principles, such as perceptrons and Bayesian models, all perform at this universal accuracy limit under ideal training conditions. Remarkably, the accuracy limit is not affected by certain non-linear transformations of the data, even if these transformations are non-reversible and drastically reduce the information content of the input data. We further compare the data embeddings that emerge by supervised and unsupervised training, using the MNIST data set and human EEG recordings during sleep. We find for MNIST that categories are significantly separated not only after supervised training with back-propagation, but also after unsupervised dimensionality reduction. A qualitatively similar cluster enhancement by unsupervised compression is observed for the EEG sleep data, but with a very small overall degree of cluster separation. We conclude that the handwritten letters in MNIST can be considered as 'natural kinds', whereas EEG sleep recordings are a relatively weakly structured data set, so that unsupervised clustering will not necessarily re-cover the human-defined sleep stages.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Humanos , Teorema de Bayes , Sueño , Fases del Sueño
15.
Neural Netw ; 139: 278-293, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33862387

RESUMEN

We introduce the Generalized Discrimination Value (GDV) that measures, in a non-invasive manner, how well different data classes separate in each given layer of an artificial neural network. It turns out that, at the end of the training period, the GDV in each given layer L attains a highly reproducible value, irrespective of the initialization of the network's connection weights. In the case of multi-layer perceptrons trained with error backpropagation, we find that classification of highly complex data sets requires a temporal reduction of class separability, marked by a characteristic 'energy barrier' in the initial part of the GDV(L) curve. Even more surprisingly, for a given data set, the GDV(L) is running through a fixed 'master curve', independently from the total number of network layers. Finally, due to its invariance with respect to dimensionality, the GDV may serve as a useful tool to compare the internal representational dynamics of artificial neural networks with different architectures for neural architecture search or network compression; or even with brain activity in order to decide between different candidate models of brain function.


Asunto(s)
Aprendizaje Automático , Bases del Conocimiento
16.
Commun Biol ; 4(1): 1385, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893700

RESUMEN

In clinical practice, human sleep is classified into stages, each associated with different levels of muscular activity and marked by characteristic patterns in the EEG signals. It is however unclear whether this subdivision into discrete stages with sharply defined boundaries is truly reflecting the dynamics of human sleep. To address this question, we consider one-channel EEG signals as heterogeneous random walks: stochastic processes controlled by hyper-parameters that are themselves time-dependent. We first demonstrate the heterogeneity of the random process by showing that each sleep stage has a characteristic distribution and temporal correlation function of the raw EEG signals. Next, we perform a super-statistical analysis by computing hyper-parameters, such as the standard deviation, kurtosis, and skewness of the raw signal distributions, within subsequent 30-second epochs. It turns out that also the hyper-parameters have characteristic, sleep-stage-dependent distributions, which can be exploited for a simple Bayesian sleep stage detection. Moreover, we find that the hyper-parameters are not piece-wise constant, as the traditional hypnograms would suggest, but show rising or falling trends within and across sleep stages, pointing to an underlying continuous rather than sub-divided process that controls human sleep. Based on the hyper-parameters, we finally perform a pairwise similarity analysis between the different sleep stages, using a quantitative measure for the separability of data clusters in multi-dimensional spaces.


Asunto(s)
Electroencefalografía , Fases del Sueño/fisiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sueño , Procesos Estocásticos , Adulto Joven
17.
Neurobiol Sleep Circadian Rhythms ; 10: 100064, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33763623

RESUMEN

Automatic sleep stage scoring based on deep neural networks has come into focus of sleep researchers and physicians, as a reliable method able to objectively classify sleep stages would save human resources and simplify clinical routines. Due to novel open-source software libraries for machine learning, in combination with enormous recent progress in hardware development, a paradigm shift in the field of sleep research towards automatic diagnostics might be imminent. We argue that modern machine learning techniques are not just a tool to perform automatic sleep stage classification, but are also a creative approach to find hidden properties of sleep physiology. We have already developed and established algorithms to visualize and cluster EEG data, facilitating first assessments on sleep health in terms of sleep-apnea and consequently reduced daytime vigilance. In the following study, we further analyze cortical activity during sleep by determining the probabilities of momentary sleep stages, represented as hypnodensity graphs and then computing vectorial cross-correlations of different EEG channels. We can show that this measure serves to estimate the period length of sleep cycles and thus can help to find disturbances due to pathological conditions.

18.
Sci Rep ; 9(1): 14091, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575917

RESUMEN

In chemotaxis, cells are modulating their migration patterns in response to concentration gradients of a guiding substance. Immune cells are believed to use such chemotactic sensing for remotely detecting and homing in on pathogens. Considering that immune cells may encounter a multitude of targets with vastly different migration properties, ranging from immobile to highly mobile, it is not clear which strategies of chemotactic pursuit are simultaneously efficient and versatile. We tackle this problem theoretically and define a tunable response function that maps temporal or spatial concentration gradients to migration behavior. The seven free parameters of this response function are optimized numerically with the objective of maximizing search efficiency against a wide spectrum of target cell properties. Finally, we reverse-engineer the best-performing parameter sets to uncover strategies of chemotactic pursuit that are efficient under different biologically realistic boundary conditions. Although strategies based on the temporal or spatial sensing of chemotactic gradients are significantly more efficient than unguided migration, such 'blind search' turns out to work surprisingly well, in particular if the immune cells are fast and directionally persistent. The resulting simulated data can be used for the design of chemotaxis experiments and for the development of algorithms that automatically detect and quantify goal oriented behavior in measured immune cell trajectories.

19.
Front Comput Neurosci ; 13: 64, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572152

RESUMEN

Stochastic Resonance (SR) and Coherence Resonance (CR) are non-linear phenomena, in which an optimal amount of noise maximizes an objective function, such as the sensitivity for weak signals in SR, or the coherence of stochastic oscillations in CR. Here, we demonstrate a related phenomenon, which we call "Recurrence Resonance" (RR): noise can also improve the information flux in recurrent neural networks. In particular, we show for the case of three-neuron motifs with ternary connection strengths that the mutual information between successive network states can be maximized by adding a suitable amount of noise to the neuron inputs. This striking result suggests that noise in the brain may not be a problem that needs to be suppressed, but indeed a resource that is dynamically regulated in order to optimize information processing.

20.
Artículo en Inglés | MEDLINE | ID: mdl-30792635

RESUMEN

Recurrent neural networks can produce ongoing state-to-state transitions without any driving inputs, and the dynamical properties of these transitions are determined by the neuronal connection strengths. Due to non-linearity, it is not clear how strongly the system dynamics is affected by discrete local changes in the connection structure, such as the removal, addition, or sign-switching of individual connections. Moreover, there are no suitable metrics to quantify structural and dynamical differences between two given networks with arbitrarily indexed neurons. In this work, we present such permutation-invariant metrics and apply them to motifs of three binary neurons with discrete ternary connection strengths, an important class of building blocks in biological networks. Using multidimensional scaling, we then study the similarity relations between all 3,411 topologically distinct motifs with regard to structure and dynamics, revealing a strong clustering and various symmetries. As expected, the structural and dynamical distance between pairs of motifs show a significant positive correlation. Strikingly, however, the key parameter controlling motif dynamics turns out to be the ratio of excitatory to inhibitory connections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA