Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 43(6): 1312-1319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578198

RESUMEN

Carbon dioxide (CO2) is gaining interest as a tool to combat aquatic invasive species, including zebra mussels (Dreissena polymorpha). However, the effects of water chemistry on CO2 efficacy are not well described. We conducted five trials in which we exposed adult zebra mussels to a range of CO2 in water with adjusted total hardness and specific conductance. We compared dose-responses and found differences in lethal concentration to 50% of organisms (LC50) estimates ranging from 108.3 to 179.3 mg/L CO2 and lethal concentration to 90% of organisms (LC90) estimates ranging from 163.7 to 216.6 mg/L CO2. We modeled LC50 and LC90 estimates with measured water chemistry variables from the trials. We found sodium (Na+) concentration to have the strongest correlation to changes in the LC50 and specific conductance to have the strongest correlation to changes in the LC90. Our results identify water chemistry as an important factor in considering efficacious CO2 concentrations for zebra mussel control. Additional research into the physiological responses of zebra mussels exposed to CO2 may be warranted to further explain mode of action and reported selectivity. Further study could likely develop a robust and relevant model to refine CO2 applications for a wider range of water chemistries. Environ Toxicol Chem 2024;43:1312-1319. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Dióxido de Carbono , Dreissena , Animales , Dreissena/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Agua/química , Dosificación Letal Mediana
2.
Environ Toxicol Chem ; 42(8): 1649-1666, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37191358

RESUMEN

Since their introduction to North America in the 1980s, research to develop effective control tools for invasive mussels (Dreissena polymorpha and D. rostriformis bugensis) has been ongoing across various research institutions using a range of testing methods. Inconsistencies in experimental methods and reporting present challenges for comparing data, repeating experiments, and applying results. The Invasive Mussel Collaborative established the Toxicity Testing Work Group (TTWG) in 2019 to identify "best practices" and guide development of a standard framework for dreissenid mussel toxicity testing protocols. We reviewed the literature related to laboratory-based dreissenid mussel toxicity tests and determined the degree to which standard guidelines have been used and their applicability to dreissenid mussel testing. We extracted detailed methodology from 99 studies from the peer-reviewed and gray literature and conducted a separate analysis for studies using presettlement and postsettlement mussels. We identified specific components of methods and approaches that could be refined or standardized for dreissenid mussels. These components included species identification, collection methods, size/age class distinction, maintenance practices, testing criteria, sample size, response measures, reporting parameters, exposure methods, and mortality criteria. We consulted experts in the field of aquatic toxicology and dreissenid mussel biology on our proposed. The final recommendations contained in the present review are based on published standard guidelines, methods reported in the published and gray literature, and the expertise of TTWG members and an external panel. In addition, our review identifies research needs for dreissenid mussel testing including improved methods for early-life stage testing, comparative data on life stages and between dreissenid mussel species, inclusion of a reference toxicant, and additional testing of nontarget species (i.e., other aquatic organisms). Environ Toxicol Chem 2023;42:1649-1666. © 2023 His Majesty the King in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Bivalvos , Dreissena , Animales , Humanos , Especies Introducidas , Dreissena/fisiología , América del Norte , Canadá
3.
Aquat Toxicol ; 238: 105934, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34399323

RESUMEN

Researchers most often focus on individual toxicants when identifying effective chemical control agents for aquatic invasive species; however, toxicant mixtures may elicit synergistic effects. Synergistic effects may decrease required concentrations and shorten exposure durations for treatments. We investigated four toxicants (EarthTec QZ, Clam-Trol CT-2, niclosamide, and potassium chloride) that have been considered to control invasive zebra mussels (Dreissena polymorpha Pallas, 1771). We determined the toxicity of binary mixtures for five different mixture ratios to adult mussels. We compared our observations to predictions made with concentration addition and independent action paradigms, as based on the dose-response relationships of each individual toxicant. We calculated the model deviation ratio for each combination at the LC50 and LC90 and identified three possible interactions: synergy, antagonism, and additivity. We found that mixtures of niclosamide and Clam-Trol CT-2 were the most synergistic while mixtures that included potassium chloride were largely additive to antagonistic. The use of synergistic combinations has potential to decrease the overall volume and concentration of individual toxicants required for dreissenid mussel treatments, thereby decreasing cost.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA