Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(45): 22657-22663, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31636187

RESUMEN

Butterflies and moths (Lepidoptera) are one of the major superradiations of insects, comprising nearly 160,000 described extant species. As herbivores, pollinators, and prey, Lepidoptera play a fundamental role in almost every terrestrial ecosystem. Lepidoptera are also indicators of environmental change and serve as models for research on mimicry and genetics. They have been central to the development of coevolutionary hypotheses, such as butterflies with flowering plants and moths' evolutionary arms race with echolocating bats. However, these hypotheses have not been rigorously tested, because a robust lepidopteran phylogeny and timing of evolutionary novelties are lacking. To address these issues, we inferred a comprehensive phylogeny of Lepidoptera, using the largest dataset assembled for the order (2,098 orthologous protein-coding genes from transcriptomes of 186 species, representing nearly all superfamilies), and dated it with carefully evaluated synapomorphy-based fossils. The oldest members of the Lepidoptera crown group appeared in the Late Carboniferous (∼300 Ma) and fed on nonvascular land plants. Lepidoptera evolved the tube-like proboscis in the Middle Triassic (∼241 Ma), which allowed them to acquire nectar from flowering plants. This morphological innovation, along with other traits, likely promoted the extraordinary diversification of superfamily-level lepidopteran crown groups. The ancestor of butterflies was likely nocturnal, and our results indicate that butterflies became day-flying in the Late Cretaceous (∼98 Ma). Moth hearing organs arose multiple times before the evolutionary arms race between moths and bats, perhaps initially detecting a wide range of sound frequencies before being co-opted to specifically detect bat sonar. Our study provides an essential framework for future comparative studies on butterfly and moth evolution.


Asunto(s)
Mariposas Diurnas/genética , Evolución Molecular , Mariposas Nocturnas/genética , Filogenia , Animales , Mariposas Diurnas/clasificación , Mariposas Diurnas/fisiología , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/fisiología
2.
BMC Biol ; 19(1): 230, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34706743

RESUMEN

BACKGROUND: Blowflies are ubiquitous insects, often shiny and metallic, and the larvae of many species provide important ecosystem services (e.g., recycling carrion) and are used in forensics and debridement therapy. Yet, the taxon has repeatedly been recovered to be para- or polyphyletic, and the lack of a well-corroborated phylogeny has prevented a robust classification. RESULTS: We here resolve the relationships between the different blowfly subclades by including all recognized subfamilies in a phylogenomic analysis using 2221 single-copy nuclear protein-coding genes of Diptera. Maximum likelihood (ML), maximum parsimony (MP), and coalescent-based phylogeny reconstructions all support the same relationships for the full data set. Based on this backbone phylogeny, blowflies are redefined as the most inclusive monophylum within the superfamily Oestroidea not containing Mesembrinellidae, Mystacinobiidae, Oestridae, Polleniidae, Sarcophagidae, Tachinidae, and Ulurumyiidae. The constituent subfamilies are re-classified as Ameniinae (including the Helicoboscinae, syn. nov.), Bengaliinae, Calliphorinae (including Aphyssurinae, syn. nov., Melanomyinae, syn. nov., and Toxotarsinae, syn. nov.), Chrysomyinae, Luciliinae, Phumosiinae, Rhiniinae stat. rev., and Rhinophorinae stat. rev. Metallic coloration in the adult is shown to be widespread but does not emerge as the most likely ground plan feature. CONCLUSIONS: Our study provides the first phylogeny of oestroid calyptrates including all blowfly subfamilies. This allows settling a long-lasting controversy in Diptera by redefining blowflies as a well-supported monophylum, and blowfly classification is adjusted accordingly. The archetypical blowfly trait of carrion-feeding maggots most likely evolved twice, and the metallic color may not belong to the blowfly ground plan.


Asunto(s)
Calliphoridae , Dípteros , Animales , Núcleo Celular , Dípteros/genética , Ecosistema , Filogenia
3.
BMC Biol ; 19(1): 23, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557827

RESUMEN

BACKGROUND: The most species-rich radiation of animal life in the 66 million years following the Cretaceous extinction event is that of schizophoran flies: a third of fly diversity including Drosophila fruit fly model organisms, house flies, forensic blow flies, agricultural pest flies, and many other well and poorly known true flies. Rapid diversification has hindered previous attempts to elucidate the phylogenetic relationships among major schizophoran clades. A robust phylogenetic hypothesis for the major lineages containing these 55,000 described species would be critical to understand the processes that contributed to the diversity of these flies. We use protein encoding sequence data from transcriptomes, including 3145 genes from 70 species, representing all superfamilies, to improve the resolution of this previously intractable phylogenetic challenge. RESULTS: Our results support a paraphyletic acalyptrate grade including a monophyletic Calyptratae and the monophyly of half of the acalyptrate superfamilies. The primary branching framework of Schizophora is well supported for the first time, revealing the primarily parasitic Pipunculidae and Sciomyzoidea stat. rev. as successive sister groups to the remaining Schizophora. Ephydroidea, Drosophila's superfamily, is the sister group of Calyptratae. Sphaeroceroidea has modest support as the sister to all non-sciomyzoid Schizophora. We define two novel lineages corroborated by morphological traits, the 'Modified Oviscapt Clade' containing Tephritoidea, Nerioidea, and other families, and the 'Cleft Pedicel Clade' containing Calyptratae, Ephydroidea, and other families. Support values remain low among a challenging subset of lineages, including Diopsidae. The placement of these families remained uncertain in both concatenated maximum likelihood and multispecies coalescent approaches. Rogue taxon removal was effective in increasing support values compared with strategies that maximise gene coverage or minimise missing data. CONCLUSIONS: Dividing most acalyptrate fly groups into four major lineages is supported consistently across analyses. Understanding the fundamental branching patterns of schizophoran flies provides a foundation for future comparative research on the genetics, ecology, and biocontrol.


Asunto(s)
Drosophila/genética , Evolución Molecular , Filogenia , Transcriptoma , Animales , Drosophila/crecimiento & desarrollo , Perfilación de la Expresión Génica , Larva/crecimiento & desarrollo , Óvulo/crecimiento & desarrollo , Pupa/crecimiento & desarrollo , Análisis de Secuencia de ADN
4.
BMC Genomics ; 22(1): 339, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975542

RESUMEN

BACKGROUND: Most insects are relatively short-lived, with a maximum lifespan of a few weeks, like the aging model organism, the fruit-fly Drosophila melanogaster. By contrast, the queens of many social insects (termites, ants and some bees) can live from a few years to decades. This makes social insects promising models in aging research providing insights into how a long reproductive life can be achieved. Yet, aging studies on social insect reproductives are hampered by a lack of quantitative data on age-dependent survival and time series analyses that cover the whole lifespan of such long-lived individuals. We studied aging in queens of the drywood termite Cryptotermes secundus by determining survival probabilities over a period of 15 years and performed transcriptome analyses for queens of known age that covered their whole lifespan. RESULTS: The maximum lifespan of C. secundus queens was 13 years, with a median maximum longevity of 11.0 years. Time course and co-expression network analyses of gene expression patterns over time indicated a non-gradual aging pattern. It was characterized by networks of genes that became differentially expressed only late in life, namely after ten years, which associates well with the median maximum lifespan for queens. These old-age gene networks reflect processes of physiological upheaval. We detected strong signs of stress, decline, defense and repair at the transcriptional level of epigenetic control as well as at the post-transcriptional level with changes in transposable element activity and the proteostasis network. The latter depicts an upregulation of protein degradation, together with protein synthesis and protein folding, processes which are often down-regulated in old animals. The simultaneous upregulation of protein synthesis and autophagy is indicative of a stress-response mediated by the transcription factor cnc, a homolog of human nrf genes. CONCLUSIONS: Our results show non-linear senescence with a rather sudden physiological upheaval at old-age. Most importantly, they point to a re-wiring in the proteostasis network and stress as part of the aging process of social insect queens, shortly before queens die.


Asunto(s)
Isópteros , Envejecimiento/genética , Animales , Abejas , Drosophila melanogaster/genética , Expresión Génica , Redes Reguladoras de Genes , Isópteros/genética
5.
Proc Natl Acad Sci U S A ; 115(21): 5504-5509, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735660

RESUMEN

Social insects are promising new models in aging research. Within single colonies, longevity differences of several magnitudes exist that can be found elsewhere only between different species. Reproducing queens (and, in termites, also kings) can live for several decades, whereas sterile workers often have a lifespan of a few weeks only. We studied aging in the wild in a highly social insect, the termite Macrotermes bellicosus, which has one of the most pronounced longevity differences between reproductives and workers. We show that gene-expression patterns differed little between young and old reproductives, implying negligible aging. By contrast, old major workers had many genes up-regulated that are related to transposable elements (TEs), which can cause aging. Strikingly, genes from the PIWI-interacting RNA (piRNA) pathway, which are generally known to silence TEs in the germline of multicellular animals, were down-regulated only in old major workers but not in reproductives. Continued up-regulation of the piRNA defense commonly found in the germline of animals can explain the long life of termite reproductives, implying somatic cooption of germline defense during social evolution. This presents a striking germline/soma analogy as envisioned by the superorganism concept: the reproductives and workers of a colony reflect the germline and soma of multicellular animals, respectively. Our results provide support for the disposable soma theory of aging.


Asunto(s)
Elementos Transponibles de ADN , Regulación de la Expresión Génica , Isópteros/genética , Longevidad , ARN Interferente Pequeño/genética , Reproducción , Animales , Secuenciación de Nucleótidos de Alto Rendimiento
6.
Proc Natl Acad Sci U S A ; 115(50): 12775-12780, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478043

RESUMEN

Hemipteroid insects (Paraneoptera), with over 10% of all known insect diversity, are a major component of terrestrial and aquatic ecosystems. Previous phylogenetic analyses have not consistently resolved the relationships among major hemipteroid lineages. We provide maximum likelihood-based phylogenomic analyses of a taxonomically comprehensive dataset comprising sequences of 2,395 single-copy, protein-coding genes for 193 samples of hemipteroid insects and outgroups. These analyses yield a well-supported phylogeny for hemipteroid insects. Monophyly of each of the three hemipteroid orders (Psocodea, Thysanoptera, and Hemiptera) is strongly supported, as are most relationships among suborders and families. Thysanoptera (thrips) is strongly supported as sister to Hemiptera. However, as in a recent large-scale analysis sampling all insect orders, trees from our data matrices support Psocodea (bark lice and parasitic lice) as the sister group to the holometabolous insects (those with complete metamorphosis). In contrast, four-cluster likelihood mapping of these data does not support this result. A molecular dating analysis using 23 fossil calibration points suggests hemipteroid insects began diversifying before the Carboniferous, over 365 million years ago. We also explore implications for understanding the timing of diversification, the evolution of morphological traits, and the evolution of mitochondrial genome organization. These results provide a phylogenetic framework for future studies of the group.


Asunto(s)
Insectos/genética , Animales , Calibración , Ecosistema , Fósiles , Genoma Mitocondrial/genética , Filogenia
8.
BMC Evol Biol ; 20(1): 64, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493355

RESUMEN

BACKGROUND: The latest advancements in DNA sequencing technologies have facilitated the resolution of the phylogeny of insects, yet parts of the tree of Holometabola remain unresolved. The phylogeny of Neuropterida has been extensively studied, but no strong consensus exists concerning the phylogenetic relationships within the order Neuroptera. Here, we assembled a novel transcriptomic dataset to address previously unresolved issues in the phylogeny of Neuropterida and to infer divergence times within the group. We tested the robustness of our phylogenetic estimates by comparing summary coalescent and concatenation-based phylogenetic approaches and by employing different quartet-based measures of phylogenomic incongruence, combined with data permutations. RESULTS: Our results suggest that the order Raphidioptera is sister to Neuroptera + Megaloptera. Coniopterygidae is inferred as sister to all remaining neuropteran families suggesting that larval cryptonephry could be a ground plan feature of Neuroptera. A clade that includes Nevrorthidae, Osmylidae, and Sisyridae (i.e. Osmyloidea) is inferred as sister to all other Neuroptera except Coniopterygidae, and Dilaridae is placed as sister to all remaining neuropteran families. Ithonidae is inferred as the sister group of monophyletic Myrmeleontiformia. The phylogenetic affinities of Chrysopidae and Hemerobiidae were dependent on the data type analyzed, and quartet-based analyses showed only weak support for the placement of Hemerobiidae as sister to Ithonidae + Myrmeleontiformia. Our molecular dating analyses suggest that most families of Neuropterida started to diversify in the Jurassic and our ancestral character state reconstructions suggest a primarily terrestrial environment of the larvae of Neuropterida and Neuroptera. CONCLUSION: Our extensive phylogenomic analyses consolidate several key aspects in the backbone phylogeny of Neuropterida, such as the basal placement of Coniopterygidae within Neuroptera and the monophyly of Osmyloidea. Furthermore, they provide new insights into the timing of diversification of Neuropterida. Despite the vast amount of analyzed molecular data, we found that certain nodes in the tree of Neuroptera are not robustly resolved. Therefore, we emphasize the importance of integrating the results of morphological analyses with those of sequence-based phylogenomics. We also suggest that comparative analyses of genomic meta-characters should be incorporated into future phylogenomic studies of Neuropterida.


Asunto(s)
Evolución Molecular , Holometabola/genética , Filogenia , Animales , Secuencia de Bases , Genómica , Larva/genética , Análisis de Secuencia de ADN , Transcriptoma
9.
BMC Evol Biol ; 20(1): 144, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148176

RESUMEN

BACKGROUND: Phylogenetic relationships among the myriapod subgroups Chilopoda, Diplopoda, Symphyla and Pauropoda are still not robustly resolved. The first phylogenomic study covering all subgroups resolved phylogenetic relationships congruently to morphological evidence but is in conflict with most previously published phylogenetic trees based on diverse molecular data. Outgroup choice and long-branch attraction effects were stated as possible explanations for these incongruencies. In this study, we addressed these issues by extending the myriapod and outgroup taxon sampling using transcriptome data. RESULTS: We generated new transcriptome data of 42 panarthropod species, including all four myriapod subgroups and additional outgroup taxa. Our taxon sampling was complemented by published transcriptome and genome data resulting in a supermatrix covering 59 species. We compiled two data sets, the first with a full coverage of genes per species (292 single-copy protein-coding genes), the second with a less stringent coverage (988 genes). We inferred phylogenetic relationships among myriapods using different data types, tree inference, and quartet computation approaches. Our results unambiguously support monophyletic Mandibulata and Myriapoda. Our analyses clearly showed that there is strong signal for a single unrooted topology, but a sensitivity of the position of the internal root on the choice of outgroups. However, we observe strong evidence for a clade Pauropoda+Symphyla, as well as for a clade Chilopoda+Diplopoda. CONCLUSIONS: Our best quartet topology is incongruent with current morphological phylogenies which were supported in another phylogenomic study. AU tests and quartet mapping reject the quartet topology congruent to trees inferred with morphological characters. Moreover, quartet mapping shows that confounding signal present in the data set is sufficient to explain the weak signal for the quartet topology derived from morphological characters. Although outgroup choice affects results, our study could narrow possible trees to derivatives of a single quartet topology. For highly disputed relationships, we propose to apply a series of tests (AU and quartet mapping), since results of such tests allow to narrow down possible relationships and to rule out confounding signal.


Asunto(s)
Artrópodos , Filogenia , Animales , Artrópodos/clasificación , Artrópodos/genética , Transcriptoma
10.
Proc Biol Sci ; 286(1895): 20182076, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30963947

RESUMEN

Phylogenetic relationships among subgroups of cockroaches and termites are still matters of debate. Their divergence times and major phenotypic transitions during evolution are also not yet settled. We addressed these points by combining the first nuclear phylogenomic study of termites and cockroaches with a thorough approach to divergence time analysis, identification of endosymbionts, and reconstruction of ancestral morphological traits and behaviour. Analyses of the phylogenetic relationships within Blattodea robustly confirm previously uncertain hypotheses such as the sister-group relationship between Blaberoidea and remaining Blattodea, and Lamproblatta being the closest relative to the social and wood-feeding Cryptocercus and termites. Consequently, we propose new names for various clades in Blattodea: Cryptocercus + termites = Tutricablattae; Lamproblattidae + Tutricablattae = Kittrickea; and Blattoidea + Corydioidea = Solumblattodea. Our inferred divergence times contradict previous studies by showing that most subgroups of Blattodea evolved in the Cretaceous, reducing the gap between molecular estimates of divergence times and the fossil record. On a phenotypic level, the blattodean ground-plan is for egg packages to be laid directly in a hole while other forms of oviposition, including ovovivipary and vivipary, arose later. Finally, other changes in egg care strategy may have allowed for the adaptation of nest building and other novelties.


Asunto(s)
Cucarachas/clasificación , Isópteros/clasificación , Filogenia , Animales , Evolución Biológica , Cucarachas/genética , Isópteros/genética
11.
Mol Phylogenet Evol ; 135: 270-285, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30822528

RESUMEN

The beetle superfamily Dytiscoidea, placed within the suborder Adephaga, comprises six families. The phylogenetic relationships of these families, whose species are aquatic, remain highly contentious. In particular the monophyly of the geographically disjunct Aspidytidae (China and South Africa) remains unclear. Here we use a phylogenomic approach to demonstrate that Aspidytidae are indeed monophyletic, as we inferred this phylogenetic relationship from analyzing nucleotide sequence data filtered for compositional heterogeneity and from analyzing amino-acid sequence data. Our analyses suggest that Aspidytidae are the sister group of Amphizoidae, although the support for this relationship is not unequivocal. A sister group relationship of Hygrobiidae to a clade comprising Amphizoidae, Aspidytidae, and Dytiscidae is supported by analyses in which model assumptions are violated the least. In general, we find that both concatenation and the applied coalescent method are sensitive to the effect of among-species compositional heterogeneity. Four-cluster likelihood-mapping suggests that despite the substantial size of the dataset and the use of advanced analytical methods, statistical support is weak for the inferred phylogenetic placement of Hygrobiidae. These results indicate that other kinds of data (e.g. genomic meta-characters) are possibly required to resolve the above-specified persisting phylogenetic uncertainties. Our study illustrates various data-driven confounding effects in phylogenetic reconstructions and highlights the need for careful monitoring of model violations prior to phylogenomic analysis.


Asunto(s)
Clasificación , Escarabajos/clasificación , Escarabajos/genética , Genómica , Filogenia , Aminoácidos/genética , Animales , Secuencia de Bases , Codón/genética , Genoma , Funciones de Verosimilitud , Transcriptoma/genética
12.
Cladistics ; 35(6): 605-622, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34618931

RESUMEN

The Calyptratae, one of the most species-rich fly clades, only originated and diversified after the Cretaceous-Palaeogene extinction event and yet exhibit high species diversity and a diverse array of life history strategies including predation, phytophagy, saprophagy, haematophagy and parasitism. We present the first phylogenomic analysis of calyptrate relationships. The analysis is based on 40 species representing all calyptrate families and on nucleotide and amino acid data for 1456 single-copy protein-coding genes obtained from shotgun sequencing of transcriptomes. Topologies are overall well resolved, robust and largely congruent across trees obtained with different approaches (maximum parsimony, maximum likelihood, coalescent-based species tree, four-cluster likelihood mapping). Many nodes have 100% bootstrap and jackknife support, but the true support varies by more than one order of magnitude [Bremer support from 3 to 3427; random addition concatenation analysis (RADICAL) gene concatenation size from 10 to 1456]. Analyses of a Dayhoff-6 recoded amino acid dataset also support the robustness of many clades. The backbone topology Hippoboscoidea+(Fanniidae+(Muscidae+((Anthomyiidae-Scathophagidae)+Oestroidea))) is strongly supported and most families are monophyletic (exceptions: Anthomyiidae and Calliphoridae). The monotypic Ulurumyiidae is either alone or together with Mesembrinellidae as the sister group to the rest of Oestroidea. The Sarcophagidae are sister to Mystacinobiidae+Oestridae. Polleniinae emerge as sister group to Tachinidae and the monophyly of the clade Calliphorinae+Luciliinae is well supported, but the phylogenomic data cannot confidently place the remaining blowfly subfamilies (Helicoboscinae, Ameniinae, Chrysomyinae). Compared to hypotheses from the Sanger sequencing era, many clades within the muscoid grade are congruent but now have much higher support. Within much of Oestroidea, Sanger era and phylogenomic data struggle equally with regard to finding well-supported hypotheses.

13.
BMC Evol Biol ; 18(1): 71, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776336

RESUMEN

BACKGROUND: Apoid wasps and bees (Apoidea) are an ecologically and morphologically diverse group of Hymenoptera, with some species of bees having evolved eusocial societies. Major problems for our understanding of the evolutionary history of Apoidea have been the difficulty to trace the phylogenetic origin and to reliably estimate the geological age of bees. To address these issues, we compiled a comprehensive phylogenomic dataset by simultaneously analyzing target DNA enrichment and transcriptomic sequence data, comprising 195 single-copy protein-coding genes and covering all major lineages of apoid wasps and bee families. RESULTS: Our compiled data matrix comprised 284,607 nucleotide sites that we phylogenetically analyzed by applying a combination of domain- and codon-based partitioning schemes. The inferred results confirm the polyphyletic status of the former family "Crabronidae", which comprises nine major monophyletic lineages. We found the former subfamily Pemphredoninae to be polyphyletic, comprising three distantly related clades. One of them, Ammoplanina, constituted the sister group of bees in all our analyses. We estimate the origin of bees to be in the Early Cretaceous (ca. 128 million years ago), a time period during which angiosperms rapidly radiated. Finally, our phylogenetic analyses revealed that within the Apoidea, (eu)social societies evolved exclusively in a single clade that comprises pemphredonine and philanthine wasps as well as bees. CONCLUSION: By combining transcriptomic sequences with those obtained via target DNA enrichment, we were able to include an unprecedented large number of apoid wasps in a phylogenetic study for tracing the phylogenetic origin of bees. Our results confirm the polyphyletic nature of the former wasp family Crabonidae, which we here suggest splitting into eight families. Of these, the family Ammoplanidae possibly represents the extant sister lineage of bees. Species of Ammoplanidae are known to hunt thrips, of which some aggregate on flowers and feed on pollen. The specific biology of Ammoplanidae as predators indicates how the transition from a predatory to pollen-collecting life style could have taken place in the evolution of bees. This insight plus the finding that (eu)social societies evolved exclusively in a single subordinated lineage of apoid wasps provides new perspectives for future comparative studies.


Asunto(s)
Abejas/clasificación , Abejas/genética , Genómica , Filogenia , Animales , Funciones de Verosimilitud , Análisis de Secuencia de ADN , Conducta Social , Transcriptoma/genética , Avispas/genética
14.
Proc Biol Sci ; 285(1885)2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158313

RESUMEN

Cooperation and division of labour are fundamental in the 'major transitions' in evolution. While the factors regulating cell differentiation in multi-cellular organisms are quite well understood, we are just beginning to unveil the mechanisms underlying individual specialization in cooperative groups of animals. Clonal ants allow the study of which factors influence task allocation without confounding variation in genotype and morphology. Here, we subjected larvae and freshly hatched workers of the clonal ant Platythyrea punctata to different rearing conditions and investigated how these manipulations affected division of labour among pairs of oppositely treated, same-aged clonemates. High rearing temperature, physical stress, injury and malnutrition increased the propensity of individuals to become subordinate foragers rather than dominant reproductives. This is reflected in changed gene regulation: early stages of division of labour were associated with different expression of genes involved in nutrient signalling pathways, metabolism and the phenotypic response to environmental stimuli. Many of these genes appear to be capable of responding to a broad range of stressors. They might link environmental stimuli to behavioural and phenotypic changes and could therefore be more broadly involved in caste differentiation in social insects. Our experiments also shed light on the causes of behavioural variation among genetically identical individuals.


Asunto(s)
Hormigas/fisiología , Estrés Fisiológico , Animales , Hormigas/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Acontecimientos que Cambian la Vida , Dinámica Poblacional , Predominio Social
15.
BMC Bioinformatics ; 18(1): 111, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28209129

RESUMEN

BACKGROUND: Orthology characterizes genes of different organisms that arose from a single ancestral gene via speciation, in contrast to paralogy, which is assigned to genes that arose via gene duplication. An accurate orthology assignment is a crucial step for comparative genomic studies. Orthologous genes in two organisms can be identified by applying a so-called reciprocal search strategy, given that complete information of the organisms' gene repertoire is available. In many investigations, however, only a fraction of the gene content of the organisms under study is examined (e.g., RNA sequencing). Here, identification of orthologous nucleotide or amino acid sequences can be achieved using a graph-based approach that maps nucleotide sequences to genes of known orthology. Existing implementations of this approach, however, suffer from algorithmic issues that may cause problems in downstream analyses. RESULTS: We present a new software pipeline, Orthograph, that addresses and solves the above problems and implements useful features for a wide range of comparative genomic and transcriptomic analyses. Orthograph applies a best reciprocal hit search strategy using profile hidden Markov models and maps nucleotide sequences to the globally best matching cluster of orthologous genes, thus enabling researchers to conveniently and reliably delineate orthologs and paralogs from transcriptomic and genomic sequence data. We demonstrate the performance of our approach on de novo-sequenced and assembled transcript libraries of 24 species of apoid wasps (Hymenoptera: Aculeata) as well as on published genomic datasets. CONCLUSION: With Orthograph, we implemented a best reciprocal hit approach to reference-based orthology prediction for coding nucleotide sequences such as RNAseq data. Orthograph is flexible, easy to use, open source and freely available at https://mptrsen.github.io/Orthograph . Additionally, we release 24 de novo-sequenced and assembled transcript libraries of apoid wasp species.


Asunto(s)
Genómica/métodos , Familia de Multigenes/genética , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Animales , Genoma/genética , Transcriptoma/genética , Avispas/genética
16.
BMC Genomics ; 18(1): 795, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29041914

RESUMEN

BACKGROUND: The New Zealand collembolan genus Holacanthella contains the largest species of springtails (Collembola) in the world. Using Illumina technology we have sequenced and assembled a draft genome and transcriptome from Holacanthella duospinosa (Salmon). We have used this annotated assembly to investigate the genetic basis of a range of traits critical to the evolution of the Hexapoda, the phylogenetic position of H. duospinosa and potential horizontal gene transfer events. RESULTS: Our genome assembly was ~375 Mbp in size with a scaffold N50 of ~230 Kbp and sequencing coverage of ~180×. DNA elements, LTRs and simple repeats and LINEs formed the largest components and SINEs were very rare. Phylogenomics (370,877 amino acids) placed H. duospinosa within the Neanuridae. We recovered orthologs of the conserved sex determination genes thought to play a role in sex determination. Analysis of CpG content suggested the absence of DNA methylation, and consistent with this we were unable to detect orthologs of the DNA methyltransferase enzymes. The small subunit rRNA gene contained a possible retrotransposon. The Hox gene complex was broken over two scaffolds. For chemosensory ability, at least 15 and 18 ionotropic glutamate and gustatory receptors were identified, respectively. However, we were unable to identify any odorant receptors or their obligate co-receptor Orco. Twenty-three chitinase-like genes were identified from the assembly. Members of this multigene family may play roles in the digestion of fungal cell walls, a common food source for these saproxylic organisms. We also detected 59 and 96 genes that blasted to bacteria and fungi, respectively, but were located on scaffolds that otherwise contained arthropod genes. CONCLUSIONS: The genome of H. duospinosa contains some unusual features including a Hox complex broken over two scaffolds, in a different manner to other arthropod species, a lack of odorant receptor genes and an apparent lack of environmentally responsive DNA methylation, unlike many other arthropods. Our detection of candidate horizontal gene transfer candidates confirms that this phenomenon is occurring across Collembola. These findings allow us to narrow down the regions of the arthropod phylogeny where key innovations have occurred that have facilitated the evolutionary success of Hexapoda.


Asunto(s)
Artrópodos/genética , Evolución Molecular , Genómica , Animales , Artrópodos/crecimiento & desarrollo , Artrópodos/metabolismo , Quitinasas/genética , Metilación de ADN , Perfilación de la Expresión Génica , Transferencia de Gen Horizontal , Anotación de Secuencia Molecular , Filogenia , Procesos de Determinación del Sexo/genética
17.
Mol Biol Evol ; 33(7): 1875-86, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27009209

RESUMEN

Target DNA enrichment combined with high-throughput sequencing technologies is a powerful approach to probing a large number of loci in genomes of interest. However, software algorithms that explicitly consider nucleotide sequence information of target loci in multiple reference species for optimizing design of target enrichment baits to be applicable across a wide range of species have not been developed. Here we present an algorithm that infers target DNA enrichment baits from multiple nucleotide sequence alignments. By applying clustering methods and the combinatorial 1-center sequence optimization to bait design, we are able to minimize the total number of baits required to efficiently probe target loci in multiple species. Consequently, more loci can be probed across species with a given number of baits. Using transcript sequences of 24 apoid wasps (Hymenoptera: Crabronidae, Sphecidae) from the 1KITE project and the gene models of Nasonia vitripennis, we inferred 57,650, 120-bp-long baits for capturing 378 coding sequence sections of 282 genes in apoid wasps. Illumina reduced-representation library sequencing confirmed successful enrichment of the target DNA when applying these baits to DNA of various apoid wasps. The designed baits furthermore enriched a major fraction of the target DNA in distantly related Hymenoptera, such as Formicidae and Chalcidoidea, highlighting the baits' broad taxonomic applicability. The availability of baits with broad taxonomic applicability is of major interest in numerous disciplines, ranging from phylogenetics to biodiversity monitoring. We implemented our new approach in a software package, called BaitFisher, which is open source and freely available at https://github.com/cmayer/BaitFisher-package.git.


Asunto(s)
Sondas de ADN/química , Sondas de ADN/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN/química , ADN/genética , Sondas de ADN/síntesis química , Biblioteca de Genes , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos
18.
Mol Ecol ; 26(12): 3217-3229, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28316142

RESUMEN

Beta-lactam biosynthesis was thought to occur only in fungi and bacteria, but we recently reported the presence of isopenicillin N synthase in a soil-dwelling animal, Folsomia candida. However, it has remained unclear whether this gene is part of a larger beta-lactam biosynthesis pathway and how widespread the occurrence of penicillin biosynthesis is among animals. Here, we analysed the distribution of beta-lactam biosynthesis genes throughout the animal kingdom and identified a beta-lactam gene cluster in the genome of F. candida (Collembola), consisting of isopenicillin N synthase (IPNS), δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS), and two cephamycin C genes (cmcI and cmcJ) on a genomic scaffold of 0.76 Mb. All genes are transcriptionally active and are inducible by stress (heat shock). A beta-lactam compound was detected in vivo using an ELISA beta-lactam assay. The gene cluster also contains an ABC transporter which is coregulated with IPNS and ACVS after heat shock. Furthermore, we show that different combinations of beta-lactam biosynthesis genes are present in over 60% of springtail families, but they are absent from genome- and transcript libraries of other animals including close relatives of springtails (Protura, Diplura and insects). The presence of beta-lactam genes is strongly correlated with an euedaphic (soil-living) lifestyle. Beta-lactam genes IPNS and ACVS each form a phylogenetic clade in between bacteria and fungi, while cmcI and cmcJ genes cluster within bacteria. This suggests a single horizontal gene transfer event most probably from a bacterial host, followed by differential loss in more recently evolving species.


Asunto(s)
Proteínas de Artrópodos/genética , Artrópodos/genética , Familia de Multigenes , beta-Lactamas , Animales , Artrópodos/enzimología , Cefamicinas , Oxidorreductasas/genética , Péptido Sintasas/genética , Filogenia
19.
Mol Phylogenet Evol ; 109: 302-320, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28126515

RESUMEN

The formation and spread of the Australian arid zone during the Neogene was a profoundly transformative event in the biogeographic history of Australia, resulting in extinction or range contraction in lineages adapted to mesic habitats, as well as diversification and range expansion in arid-adapted taxa (most of which evolved from mesic ancestors). However, the geographic origins of the arid zone biota are still relatively poorly understood, especially among highly diverse invertebrate lineages, many of which are themselves poorly documented at the species level. Spiny trapdoor spiders (Idiopidae: Arbanitinae) are one such lineage, having mesic 'on-the-continent' Gondwanan origins, while also having experienced major arid zone radiations in select clades. In this study, we present new orthologous nuclear markers for the phylogenetic inference of mygalomorph spiders, and use them to infer the phylogeny of Australasian Idiopidae with a 12-gene parallel tagged amplicon next-generation sequencing approach. We use these data to test the mode and timing of diversification of arid-adapted idiopid lineages across mainland Australia, and employ a continent-wide sampling of the fauna's phylogenetic and geographic diversity to facilitate ancestral area inference. We further explore the evolution of phenotypic and behavioural characters associated with both arid and mesic environments, and test an 'out of south-western Australia' hypothesis for the origin of arid zone clades. Three lineages of Idiopidae are shown to have diversified in the arid zone during the Miocene, one (genus Euoplos) exclusively in Western Australia. Arid zone Blakistonia likely had their origins in South Australia, whereas in the most widespread genus Aganippe, a more complex scenario is evident, with likely range expansion from southern Western Australia to southern South Australia, from where the bulk of the arid zone fauna then originated. In Aganippe, remarkable adaptations to phragmotic burrow-plugging in transitional arid zone taxa have evolved twice independently in Western Australia, while in Misgolas and Cataxia, burrow door-building behaviours have likely been independently lost at least three times in the eastern Australian mesic zone. We also show that the presence of idiopids in New Zealand (Cantuaria) is likely to be the result of recent dispersal from Australia, rather than ancient continental vicariance. By providing the first comprehensive, continental synopsis of arid zone biogeography in an Australian arachnid lineage, we show that the diversification of arbanitine Idiopidae was intimately associated with climate shifts during the Neogene, resulting in multiple Mio-Pliocene radiations.


Asunto(s)
Evolución Biológica , Cambio Climático , Arañas/genética , Animales , Australia , Ecosistema , Especiación Genética , Nueva Zelanda , Filogenia , Australia del Sur , Arañas/clasificación , Australia Occidental
20.
Mol Phylogenet Evol ; 116: 213-226, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28887149

RESUMEN

The wasp family Vespidae comprises more than 5000 described species which represent life history strategies ranging from solitary and presocial to eusocial and socially parasitic. The phylogenetic relationships of the major vespid wasp lineages (i.e., subfamilies and tribes) have been investigated repeatedly by analyzing behavioral and morphological traits as well as nucleotide sequences of few selected genes with largely incongruent results. Here we reconstruct their phylogenetic relationships using a phylogenomic approach. We sequenced the transcriptomes of 24 vespid wasp and eight outgroup species and exploited the transcript sequences for design of probes for enriching 913 single-copy protein-coding genes to complement the transcriptome data with nucleotide sequence data from additional 25 ethanol-preserved vespid species. Results from phylogenetic analyses of the combined sequence data revealed the eusocial subfamily Stenogastrinae to be the sister group of all remaining Vespidae, while the subfamily Eumeninae turned out to be paraphyletic. Of the three currently recognized eumenine tribes, Odynerini is paraphyletic with respect to Eumenini, and Zethini is paraphyletic with respect to Polistinae and Vespinae. Our results are in conflict with the current tribal subdivision of Eumeninae and thus, we suggest granting subfamily rank to the two major clades of "Zethini": Raphiglossinae and Zethinae. Overall, our findings corroborate the hypothesis of two independent origins of eusociality in vespid wasps and suggest a single origin of using masticated and salivated plant material for building nests by Raphiglossinae, Zethinae, Polistinae, and Vespinae. The inferred phylogenetic relationships and the open access vespid wasp target DNA enrichment probes will provide a valuable tool for future comparative studies on species of the family Vespidae, including their genomes, life styles, evolution of sociality, and co-evolution with other organisms.


Asunto(s)
ADN/genética , Filogenia , Transcriptoma/genética , Avispas/clasificación , Avispas/genética , Animales , Secuencia de Bases , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA