Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Neuropathol ; 142(5): 899-915, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34487221

RESUMEN

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) characterized by varying degrees of secondary neurodegeneration. Retinal ganglion cells (RGC) are lost in MS in association with optic neuritis but the mechanisms of neuronal injury remain unclear. Complement component C3 has been implicated in retinal and cerebral synaptic pathology that may precede neurodegeneration. Herein, we examined post-mortem MS retinas, and then used a mouse model, experimental autoimmune encephalomyelitis (EAE), to examine the role of C3 in the pathogenesis of RGC loss associated with optic neuritis. First, we show extensive C3 expression in astrocytes (C3+/GFAP+ cells) and significant RGC loss (RBPMS+ cells) in post-mortem retinas from people with MS compared to retinas from non-MS individuals. A patient with progressive MS with a remote history of optic neuritis showed marked reactive astrogliosis with C3 expression in the inner retina extending into deeper layers in the affected eye more than the unaffected eye. To study whether C3 mediates retinal degeneration, we utilized global C3-/- EAE mice and found that they had less RGC loss and partially preserved neurites in the retina compared with C3+/+ EAE mice. C3-/- EAE mice had fewer axonal swellings in the optic nerve, reflecting reduced axonal injury, but had no changes in demyelination or T cell infiltration into the CNS. Using a C3-tdTomato reporter mouse line, we show definitive evidence of C3 expression in astrocytes in the retina and optic nerves of EAE mice. Conditional deletion of C3 in astrocytes showed RGC protection replicating the effects seen in the global knockouts. These data implicate astrocyte C3 expression as a critical mediator of retinal neuronal pathology in EAE and MS, and are consistent with recent studies showing C3 gene variants are associated with faster rates of retinal neurodegeneration in human disease.


Asunto(s)
Complemento C3/metabolismo , Esclerosis Múltiple/patología , Enfermedades Neuroinflamatorias/patología , Células Ganglionares de la Retina/patología , Animales , Astrocitos/inmunología , Astrocitos/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Humanos , Ratones , Esclerosis Múltiple/inmunología , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/patología , Enfermedades Neuroinflamatorias/inmunología , Nervio Óptico/patología , Neuritis Óptica/inmunología , Neuritis Óptica/patología
2.
Inflamm Res ; 67(7): 589-596, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29713730

RESUMEN

BACKGROUND: The chronic inflammation associated with rheumatoid arthritis (RA) leads to focal and systemic bone erosion of the joints resulting in a crippling disability. Recent reports indicate an increase in the incidence of RA in the coming years, placing a significant burden on healthcare resources. The incidence of RA is observed to be increasing with age and a significant proportion of those new cases will be aggressively erosive. FINDINGS: The altered physiology, due to immune disturbances, contributes towards RA pathogenesis. The imbalance of inflammatory cytokines and non-cytokine immune modulators such as prostaglandin E2 (PGE2) and IL-23-induced pathogenic IL-17, plays a crucial role in persistent inflammation and bone degradation during RA. However, the molecular mechanism of IL-23, a key cytokine, and PGE2 in the development and perpetuation of IL-17 producing effector Th17 cells is poorly understood. CONCLUSION: This review focuses on research findings that provide insight into the contribution of PGE2 and IL-23 during the development of pathogenic Th17 cells. We also highlight the key transcriptional factors required for Th17 development and therapeutic strategies to disrupt the interaction between IL-23 and IL-17 to prevent the end-organ damage in RA.


Asunto(s)
Artritis Reumatoide/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Células Th17/metabolismo , Animales , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Humanos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
3.
Elife ; 122023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37057892

RESUMEN

Oligodendrocytes and their progenitors upregulate MHC pathways in response to inflammation, but the frequency of this phenotypic change is unknown and the features of these immune oligodendroglia are poorly defined. We generated MHC class I and II transgenic reporter mice to define their dynamics in response to inflammatory demyelination, providing a means to monitor MHC activation in diverse cell types in living mice and define their roles in aging, injury, and disease.


Nerve cells in the brain and spinal cord are surrounded by a layer of insulation called myelin that allows cells to transmit messages to each other more quickly and efficiently. This protective sheath is produced by cells called oligodendrocytes which together with their immature counterparts can also repair damage caused to myelin. In the inflammatory disease multiple sclerosis (MS), this insulation is disrupted and oligodendroglia fail to repair breaks in the myelin sheath, leaving nerves vulnerable to further damage. Recently it was discovered that mature and immature oligodendrocytes (which are collectively known as oligodendroglia) sometimes express proteins normally restricted to the immune system called major histocompatibility complexes (or MHCs for short). Researchers believe that MHC expression may allow oligodendroglia to interact with immune cells, potentially leading to the removal of oligodendroglia by the immune system as well as inflammation that exacerbates damage to nerves and hinders myelin repair. Knowing when oligodendroglia start producing MHCs and where these MHC-expressing cells are located is therefore important for understanding their role in MS. However, it is difficult to identify the location of MHC-expressing oligodendroglia using methods that are currently available. To address this, Harrington, Catenacci et al. created a genetically engineered mouse model in which the MHC-expressing oligodendroglia also generated a red fluorescent protein that could be detected under a microscope. This revealed that only a small number of oligodendroglia in the nervous system had MHCs, but these cells were located in areas of the brain and spinal cord with the highest inflammatory activity. Further microscopy studies in mice that developed MS-like symptoms revealed that MHC production in oligodendroglia increased compared with healthy animals, and that the proportion of oligodendroglia that produced MHC was highest in mice with the most severe symptoms. MHC-expressing oligodendroglia also congregated in the most damaged areas of the brain and spinal cord. These results suggest that MHC expression may contribute to inflammation and impact the function of oligodendroglia that have these molecules. In the future, Harrington et al. hope that their new mouse model will help researchers study the role of MHC expression in different diseases, and in the case of MS, aid the development of new treatments.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Ratones , Animales , Esclerosis Múltiple/metabolismo , Enfermedades Desmielinizantes/metabolismo , Oligodendroglía/metabolismo , Ratones Transgénicos , Vaina de Mielina/metabolismo
4.
Neurotherapeutics ; 18(3): 1834-1848, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34260042

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), characterized by demyelination, gliosis, and neurodegeneration. While the currently available disease-modifying therapies effectively suppress the immune attack on the CNS, there are no therapies to date that directly mitigate neurodegeneration. Glucagon-like peptide-1 (GLP-1) is a small peptide hormone that maintains glucose homeostasis. A novel GLP-1 receptor (GLP-1R) agonist, NLY01, was recently shown to have neuroprotective effects in the animal models of Parkinson's disease and is now in a phase 2 clinical trial. In this study, we investigated the therapeutic potential of NLY01 in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Our data show that NLY01 delays the onset and attenuates the severity of EAE in a prevention paradigm, when given before disease onset. NLY01 inhibits the activation of immune cells in the spleen and reduces their trafficking into the CNS. In addition, we show that NLY01 suppresses the production of chemokines that are involved in leukocyte recruitment to the site of inflammation. The anti-inflammatory effect of NLY01 at the early stage of EAE may block the expression of the genes associated with neurotoxic astrocytes in the optic nerves, thereby preventing retinal ganglion cell (RGC) loss in the progressive stage of EAE. In the therapeutic paradigm, NLY01 significantly decreases the clinical score and second attack in a model of relapsing-remitting EAE. GLP-1R agonists may have dual efficacy in MS by suppressing peripheral and CNS inflammation, thereby limiting neuronal loss.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/inmunología , Fármacos Neuroprotectores/uso terapéutico , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo
5.
Sci Rep ; 10(1): 14589, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883997

RESUMEN

Lipocalin-2 (Lcn2) is an innate immune protein elevated by several orders of magnitude in various inflammatory conditions including aging and obesity. Recent studies have shown that Lcn2 is secreted by adipocytes in response to inflammation and is categorized as a new adipokine cross-linking innate immunity and metabolic disorders including obesity. However, the involvement of Lcn2 and its function during the progression of obesity is largely unknown. Recently, browning of white adipose tissue (WAT) has gained attention as a therapeutic strategy to combat obesity. Herein, we have shown that treatment of mature 3T3-L1 adipocytes with recombinant Lcn2 (rec-Lcn2) resulted in the up-regulation of thermogenic and beige/brown markers (UCP1, PRDM16, ZIC-1 and TBX1) and increased mitochondrial activity. Additionally, global Lcn2 genetic knockout (Lcn2KO) mice exhibited accelerated weight gain and visceral fat deposition with age, when compared to wild type (WT) mice. Taken together, both in vitro and in vivo studies suggest that Lcn2 is a naturally occurring adipokine, and may serve as an anti-obesity agent by upregulating the thermogenic markers resulting in the browning of WAT. Therefore, Lcn2 and its downstream signaling pathways could be a potential therapeutic target for obesity.


Asunto(s)
Tejido Adiposo/patología , Envejecimiento , Grasa Intraabdominal/patología , Lipocalina 2/fisiología , Obesidad/fisiopatología , Células 3T3-L1 , Tejido Adiposo/metabolismo , Animales , Femenino , Grasa Intraabdominal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Termogénesis , Aumento de Peso
6.
J Clin Invest ; 130(7): 3467-3482, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32182223

RESUMEN

Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the CNS. Bile acids are cholesterol metabolites that can signal through receptors on cells throughout the body, including in the CNS and the immune system. Whether bile acid metabolism is abnormal in MS is unknown. Using global and targeted metabolomic profiling, we identified lower levels of circulating bile acid metabolites in multiple cohorts of adult and pediatric patients with MS compared with controls. In white matter lesions from MS brain tissue, we noted the presence of bile acid receptors on immune and glial cells. To mechanistically examine the implications of lower levels of bile acids in MS, we studied the in vitro effects of an endogenous bile acid, tauroursodeoxycholic acid (TUDCA), on astrocyte and microglial polarization. TUDCA prevented neurotoxic (A1) polarization of astrocytes and proinflammatory polarization of microglia in a dose-dependent manner. TUDCA supplementation in experimental autoimmune encephalomyelitis reduced the severity of disease through its effects on G protein-coupled bile acid receptor 1 (GPBAR1). We demonstrate that bile acid metabolism was altered in MS and that bile acid supplementation prevented polarization of astrocytes and microglia to neurotoxic phenotypes and ameliorated neuropathology in an animal model of MS. These findings identify dysregulated bile acid metabolism as a potential therapeutic target in MS.


Asunto(s)
Astrocitos/metabolismo , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido Tauroquenodesoxicólico , Animales , Astrocitos/patología , Modelos Animales de Enfermedad , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Ratones , Microglía/patología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Ácido Tauroquenodesoxicólico/metabolismo , Ácido Tauroquenodesoxicólico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA