Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BJU Int ; 126(3): 350-358, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32315504

RESUMEN

OBJECTIVE: To predict intra-operative (IOEs) and postoperative events (POEs) consequential to the derailment of the ideal clinical course of patient recovery. MATERIALS AND METHODS: The Vattikuti Collective Quality Initiative is a multi-institutional dataset of patients who underwent robot-assisted partial nephectomy for kidney tumours. Machine-learning (ML) models were constructed to predict IOEs and POEs using logistic regression, random forest and neural networks. The models to predict IOEs used patient demographics and preoperative data. In addition to these, intra-operative data were used to predict POEs. Performance on the test dataset was assessed using area under the receiver-operating characteristic curve (AUC-ROC) and area under the precision-recall curve (PR-AUC). RESULTS: The rates of IOEs and POEs were 5.62% and 20.98%, respectively. Models for predicting IOEs were constructed using data from 1690 patients and 38 variables; the best model had an AUC-ROC of 0.858 (95% confidence interval [CI] 0.762, 0.936) and a PR-AUC of 0.590 (95% CI 0.400, 0.759). Models for predicting POEs were trained using data from 1406 patients and 59 variables; the best model had an AUC-ROC of 0.875 (95% CI 0.834, 0.913) and a PR-AUC 0.706 (95% CI, 0.610, 0.790). CONCLUSIONS: The performance of the ML models in the present study was encouraging. Further validation in a multi-institutional clinical setting with larger datasets would be necessary to establish their clinical value. ML models can be used to predict significant events during and after surgery with good accuracy, paving the way for application in clinical practice to predict and intervene at an opportune time to avert complications and improve patient outcomes.


Asunto(s)
Complicaciones Intraoperatorias/epidemiología , Neoplasias Renales/cirugía , Aprendizaje Automático , Nefrectomía/métodos , Complicaciones Posoperatorias/epidemiología , Procedimientos Quirúrgicos Robotizados , Anciano , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA