Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834715

RESUMEN

The interaction between leukocytes and cytokine-activated retinal endothelium is an initiating step in non-infectious uveitis involving the posterior eye, mediated by cell adhesion molecules. However, because cell adhesion molecules are required for immune surveillance, therapeutic interventions would ideally be employed indirectly. Using 28 primary human retinal endothelial cell isolates, this study sought to identify transcription factor targets for reducing levels of the key retinal endothelial cell adhesion molecule, intercellular adhesion molecule (ICAM)-1, and limiting leukocyte binding to the retinal endothelium. Five candidate transcription factors-C2CD4B, EGR3, FOSB, IRF1, and JUNB-were identified by differential expression analysis of a transcriptome generated from IL-1ß- or TNF-α-stimulated human retinal endothelial cells, interpreted in the context of the published literature. Further filtering involved molecular studies: of the five candidates, C2CD4B and IRF1 consistently demonstrated extended induction in IL-1ß- or TNF-α-activated retinal endothelial cells and demonstrated a significant decrease in both ICAM-1 transcript and ICAM-1 membrane-bound protein expression by cytokine-activated retinal endothelial cells following treatment with small interfering RNA. RNA interference of C2CD4B or IRF1 significantly reduced leukocyte binding in a majority of human retinal endothelial cell isolates stimulated by IL-1ß or TNF-α. Our observations suggest that the transcription factors C2CD4B and IRF1 may be potential drug targets for limiting leukocyte-retinal endothelial cell interactions in non-infectious uveitis involving the posterior eye.


Asunto(s)
Células Endoteliales , Molécula 1 de Adhesión Intercelular , Humanos , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/metabolismo , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
2.
BMC Cancer ; 22(1): 222, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232427

RESUMEN

BACKGROUND: Rectal Cancer is a common malignancy. The current treatment approach for patients with locally advanced rectal cancer involves neoadjuvant chemoradiotherapy followed by surgical resection of the rectum. The resection can lead to complications and long-term consequences. A clinical complete response is observed in some patients after chemoradiotherapy. A number of recent studies have shown that patients can be observed safely after completing chemoradiotherapy (without surgery), provided clinical complete response has been achieved. In this approach, resection is reserved for cases of regrowth. This is called the watch and wait approach. This approach potentially avoids unnecessary surgical resection of the rectum and the resulting complications. In this study, we will prospectively investigate this approach. METHODS: Adult patients with a diagnosis of rectal cancer planned to receive neoadjuvant long course chemoradiotherapy (± subsequent combination chemotherapy) will be consented into the study prior to commencing treatment. After completing the chemoradiotherapy (± subsequent combination chemotherapy), based on the clinical response, subjects will be allocated to one of the following arms: subjects who achieved a clinical complete response will be allocated to the watch and wait arm and others to the standard management arm (which includes resection). The aim of the study is to determine the rate of local failure and other safety and efficacy outcomes in the watch and wait arm. Patient reported outcome measures and the use of biomarkers as part of the clinical monitoring will be studied in both arms of the study. DISCUSSION: This study will prospectively investigate the safety of the watch and wait approach. We will investigate predictive biomarkers (molecular biomarkers and imaging biomarkers) and patient reported outcome measures in the study population and the cost effectiveness of the watch and wait approach. This study will also help evaluate a defined monitoring schedule for patients managed with the watch and wait approach. This protocol covers the first two years of follow up, we are planning a subsequent study which covers year 3-5 follow up for the study population. TRIAL REGISTRATION: Name of the registry: Australia and New Zealand Clinical Trials Registry (ANZCTR). TRIAL REGISTRATION NUMBER: Trial ID: ACTRN12619000207112 Registered 13 February 2019, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=376810.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto/terapia , Espera Vigilante/métodos , Adulto , Biomarcadores de Tumor/análisis , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Neoplasias del Recto/mortalidad , Tasa de Supervivencia , Resultado del Tratamiento
3.
Int J Mol Sci ; 22(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34074015

RESUMEN

TP53 gene mutations occur in 70% of oesophageal adenocarcinomas (OACs). Given the central role of p53 in controlling cellular response to therapy we investigated the role of mutant (mut-) p53 and SLC7A11 in a CRISPR-mediated JH-EsoAd1 TP53 knockout model. Response to 2 Gy irradiation, cisplatin, 5-FU, 4-hydroxytamoxifen, and endoxifen was assessed, followed by a TaqMan OpenArray qPCR screening for differences in miRNA expression. Knockout of mut-p53 resulted in increased chemo- and radioresistance (2 Gy survival fraction: 38% vs. 56%, p < 0.0001) and in altered miRNA expression levels. Target mRNA pathways analyses indicated several potential mechanisms of treatment resistance. SLC7A11 knockdown restored radiosensitivity (2 Gy SF: 46% vs. 73%; p = 0.0239), possibly via enhanced sensitivity to oxidative stress. Pathway analysis of the mRNA targets of differentially expressed miRNAs indicated potential involvement in several pathways associated with apoptosis, ribosomes, and p53 signaling pathways. The data suggest that mut-p53 in JH-EsoAd1, despite being classified as non-functional, has some function related to radio- and chemoresistance. The results also highlight the important role of SLC7A11 in cancer metabolism and redox balance and the influence of p53 on these processes. Inhibition of the SLC7A11-glutathione axis may represent a promising approach to overcome resistance associated with mut-p53.


Asunto(s)
Adenocarcinoma/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Antineoplásicos/farmacología , Apoptosis/genética , Resistencia a Antineoplásicos/genética , Neoplasias Esofágicas/metabolismo , MicroARNs/metabolismo , Estrés Oxidativo/genética , Proteína p53 Supresora de Tumor/metabolismo , Adenocarcinoma/genética , Sistema de Transporte de Aminoácidos y+/genética , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de la radiación , Neoplasias Esofágicas/genética , Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Técnicas de Inactivación de Genes , Ontología de Genes , Glutatión/metabolismo , Humanos , MicroARNs/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética
4.
Mol Pain ; 16: 1744806920970368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33307981

RESUMEN

The embryonic rat dorsal root ganglion (DRG) neuron-derived 50B11 cell line is a promising sensory neuron model expressing markers characteristic of NGF and GDNF-dependent C-fibre nociceptors. Whether these cells have the capacity to develop into distinct nociceptive subtypes based on NGF- or GDNF-dependence has not been investigated. Here we show that by augmenting forskolin (FSK) and growth factor supplementation with NGF or GDNF, 50B11 cultures can be driven to acquire differential functional responses to common nociceptive agonists capsaicin and ATP respectively. In addition, to previous studies, we also demonstrate that a differentiated neuronal phenotype can be maintained for up to 7 days. Western blot analysis of nociceptive marker proteins further demonstrates that the 50B11 cells partially recapitulate the functional phenotypes of classical NGF-dependent (peptidergic) and GDNF-dependent (non-peptidergic) neuronal subtypes described in DRGs. Further, 50B11 cells differentiated with NGF/FSK, but not GDNF/FSK, show sensitization to acute prostaglandin E2 treatment. Finally, RNA-Seq analysis confirms that differentiation with NGF/FSK or GDNF/FSK produces two 50B11 cell subtypes with distinct transcriptome expression profiles. Gene ontology comparison of the two subtypes of differentiated 50B11 cells to rodent DRG neurons studies shows significant overlap in matching or partially matching categories. This transcriptomic analysis will aid future suitability assessment of the 50B11 cells as a high-throughput nociceptor model for a broad range of experimental applications. In conclusion, this study shows that the 50B11 cell line is capable of partially recapitulating features of two distinct types of embryonic NGF and GDNF-dependent nociceptor-like cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Ganglios Espinales/citología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Factor de Crecimiento Nervioso/farmacología , Nociceptores/citología , Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/farmacología , Animales , Biomarcadores/metabolismo , Capsaicina/farmacología , Diferenciación Celular/genética , Línea Celular , Forma de la Célula/efectos de los fármacos , Colforsina/farmacología , Dinoprostona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Variación Genética , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nociceptores/efectos de los fármacos , Fenotipo , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Canales de Sodio/metabolismo
5.
Pancreatology ; 20(3): 385-390, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32057682

RESUMEN

The islet-acinar axis is of prime importance to the optimal functioning of the human pancreas. Not only is this inter-relationship important for normal physiological processes, it is also relevant in diseased states, including chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Early experiments, nearly 4 decades ago, explored the role of islets in the development and progression of PDAC. These led to further studies that provided compelling evidence to support the role of islets and their hormones in PDAC. This association presents oncologists with therapeutic options not only for managing, but potentially preventing PDAC, a cancer that is well known for its poor patient outcomes. This review will discuss the accumulated evidence regarding the role of islets and their hormones in PDAC and highlight areas for future research.


Asunto(s)
Adenocarcinoma/terapia , Adenoma de Células de los Islotes Pancreáticos/terapia , Carcinoma Ductal Pancreático/terapia , Islotes Pancreáticos/patología , Neoplasias Pancreáticas/terapia , Adenocarcinoma/patología , Adenoma de Células de los Islotes Pancreáticos/patología , Carcinoma Ductal Pancreático/patología , Humanos , Neoplasias Pancreáticas/patología , Investigación Biomédica Traslacional
6.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255413

RESUMEN

Many patients with Oesophageal Adenocarcinoma (OAC) do not benefit from chemoradiotherapy treatment due to therapy resistance. To better understand the mechanisms involved in resistance and to find potential biomarkers, we investigated the association of microRNAs, which regulate gene expression, with the response to individual treatments, focusing on radiation. Intrinsic radiation resistance and chemotherapy drug resistance were assessed in eight OAC cell lines, and miRNA expression profiling was performed via TaqMan OpenArray qPCR. miRNAs discovered were either uniquely associated with resistance to radiation, cisplatin, or 5-FU, or were common to two or all three of the treatments. Target mRNA pathway analyses indicated several potential mechanisms of treatment resistance. miRNAs associated with the in vitro treatment responses were then investigated for association with pathologic response to neoadjuvant chemoradiotherapy (nCRT) in pre-treatment serums of patients with OAC. miR-451a was associated uniquely with resistance to radiation treatment in the cell lines, and with the response to nCRT in patient serums. Inhibition of miR-451a in the radiation resistant OAC cell line OE19 increased radiosensitivity (Survival Fraction 73% vs. 87%, p = 0.0003), and altered RNA expression. Pathway analysis of effected small non-coding RNAs and corresponding mRNA targets suggest potential mechanisms of radiation resistance in OAC.


Asunto(s)
Adenocarcinoma/radioterapia , Neoplasias Esofágicas/radioterapia , MicroARNs/genética , Tolerancia a Radiación/genética , Adenocarcinoma/sangre , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Apoptosis/efectos de la radiación , Biomarcadores de Tumor , Quimioradioterapia/efectos adversos , Cisplatino/administración & dosificación , Neoplasias Esofágicas/sangre , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/efectos de la radiación , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Masculino , Persona de Mediana Edad
7.
Ann Surg Oncol ; 25(9): 2731-2738, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29987600

RESUMEN

BACKGROUND: Clinical trials report improved overall survival following neoadjuvant chemoradiotherapy in patients undergoing surgery for esophageal adenocarcinoma, with a 10-15% survival improvement. MicroRNAs (miRNAs) are small noncoding RNAs that are known to direct the behavior of cancers, including response to treatment. We investigated the ability of miRNAs to predict outcomes after neoadjuvant chemoradiotherapy. METHODS: Endoscopic biopsies from esophageal adenocarcinomas were obtained before neoadjuvant chemoradiotherapy and esophagectomy. miRNA levels were measured in the biopsies using next generation sequencing and compared with pathological response in the surgical resection, and subsequent survival. miRNA ratios that predicted pathological response were identified by Lasso regression and leave-one-out cross-validation. Association between miRNA ratio candidates and relapse-free survival was assessed using Kaplan-Meier analysis. Cox regression and Harrell's C analyses were performed to assess the predictive performance of the miRNAs. RESULTS: Two miRNA ratios (miR-4521/miR-340-5p and miR-101-3p/miR-451a) that predicted the pathological response to neoadjuvant chemoradiotherapy were found to be associated with relapse-free survival. Pretreatment expression of these two miRNA ratios, pretreatment tumor differentiation, posttreatment AJCC histopathological tumor regression grading, and posttreatment tumor clearance/margins were significant factors associated with survival in Cox regression analysis. Multivariate analysis of the two ratios together with pretherapy factors resulted in a risk prediction accuracy of 85% (Harrell's C), which was comparable with the prediction accuracy of the AJCC treatment response grading (77%). CONCLUSIONS: miRNA-ratio biomarkers identified using next generation sequencing can be used to predict disease free survival following neoadjuvant chemoradiotherapy and esophagectomy in patients with esophageal adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Quimioradioterapia , Neoplasias Esofágicas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , Recurrencia Local de Neoplasia/genética , Adenocarcinoma/patología , Adenocarcinoma/terapia , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/terapia , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/terapia , Pronóstico , Tasa de Supervivencia
8.
J Extra Corpor Technol ; 50(1): 19-29, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29559751

RESUMEN

A pilot study to measure and compare blood and urine microRNAs miR-210 and miR-16 in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and off-pump coronary artery bypass grafting surgery. Frequent serial blood and urine samples were taken from patients undergoing cardiac surgery with CPB (n = 10) and undergoing off-pump cardiac surgery (n = 5) before, during, and after surgery. Circulating miR-210 and miR-16 levels were determined by relative quantification real-time polymerase chain reaction. Levels of plasma-free haemoglobin (fHb), troponin-T, creatine kinase, and creatinine were measured. Perioperative serum miR-210 and miR-16 were elevated significantly compared to preoperative levels in patients undergoing cardiac surgery with CPB (CPB vs. Pre Op and Rewarm vs. Pre Op; p < .05 for both). There were increases of greater than 200% in miR-210 levels during rewarming and immediately postoperatively and a 3,000% increase in miR-16 levels immediately postoperatively in urine normalized to urinary creatinine concentration. Serum levels of miR-16 were relatively constant during off-pump surgery. miR-210 levels increased significantly in off-pump patients perioperatively (p < .05 Octopus on vs. Pre Op); however, the release was less marked when compared to cardiac surgery with CPB. A significant association was observed between both miR-16 and miR-210 and plasma fHb when CPB was used (r = -.549, p < .0001 and r = -.463, p < .0001 respectively). Serum and urine concentrations of hypoxically regulated miR-210 and hemolysis-associated miR-16 increased in cardiac surgery using CPB compared to off-pump surgery. These molecules may have utility in indicating severity of cardiac, red cell, and renal injury during cardiac surgery.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Puente Cardiopulmonar , MicroARNs , Creatina/orina , Hemoglobinas/análisis , Hemólisis , Humanos , Hipoxia , MicroARNs/sangre , MicroARNs/orina , Proyectos Piloto
9.
Nephrology (Carlton) ; 22(11): 854-863, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27496221

RESUMEN

AIM: Extracellular vesicles, such as exosomes, are present in urine with reports of roles in intercellular signalling and diagnostic utility. However, the extent to which the concentration and characteristics of urinary vesicles are altered in albuminuric renal disease has not been well characterized. In this study, we examined the number and characteristics of extracellular vesicles in albuminuric urine. METHODS: Vesicles were isolated from the urine of 32 patients with varying levels of albuminuria using ultracentrifugation and density gradient purification and were examined using nanoparticle tracking analysis, immunoblotting and transmission electron microscopy. The size profile of particles in these urine preparations was compared with albumin-containing solutions. RESULTS: Overall, there were no substantial differences in the number, or characteristics, of vesicles released into proteinuric urine. Analysis of albumin-containing solutions showed particles of exosome-like size, suggesting that such particles can mimic exosomes in standard nanoparticle tracking analysis. Albumin and IgG depletion of proteinuric urine resulted in a substantial reduction in the concentration of particles detected by nanoparticle tracking analysis. CONCLUSION: There was no increase in urinary vesicle concentration in patients with albuminuria. Furthermore, these results demonstrate the need for cautious interpretation of nanoparticle tracking analysis of vesicle concentration in biological fluids containing protein and for sophisticated preparative methods in vesicle purification from urine.


Asunto(s)
Albuminuria/orina , Vesículas Extracelulares/fisiología , Nanopartículas , Biomarcadores , Exosomas , Humanos , Tamaño de la Partícula , Ultracentrifugación
10.
Drug Dev Res ; 76(6): 296-317, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26303212

RESUMEN

Chromatin-modifying drugs, such as histone deacetylase inhibitors (HDACi), have shown potential as cancer therapeutics, either alone or in combination with other therapies. HDACi have the ability to reverse aberrant epigenetic modifications associated with cancer, namely dysregulated histone acetylation. There are currently three FDA approved HDACi; vorinostat, romidepsin, and panobinostat. Epigenetic modifications can regulate the expression of protein coding genes, and in addition can alter expression of microRNA (miRNA) genes. Many miRNAs play key roles in cell proliferation and apoptosis, and are commonly dysregulated in cancer states. A number of in vitro and in vivo studies have demonstrated the ability of chromatin-modifying drugs to alter miRNA expression, which may provide the basis for further investigation of miRNAs as therapeutic targets or as biomarkers of drug response. This review summarises findings from studies investigating the effects of HDACi on miRNA expression, as well as key clinical trials involving HDACi. Understanding how chromatin-modifying drugs epigenetically modulate miRNA genes provides further insight into the cellular mechanisms that deliver therapeutic responses, and may assist in refining treatment strategies.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , MicroARNs/genética , Neoplasias/genética , Animales , Antineoplásicos/uso terapéutico , Quimioterapia Combinada , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico
11.
BMC Cancer ; 14: 533, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25052766

RESUMEN

BACKGROUND: Cancers are commonly characterised by hypoxia and also by global reductions in the levels of mature microRNAs. We have examined the hypothesis that hypoxia might mediate this reduction through repressive effects on microRNA biogenesis proteins. METHODS: Breast cancer cell lines were exposed to hypoxia and manipulations of hypoxia inducible factor (HIF) and HIF hydroxylase activity. The effects of hypoxia on the mRNA and protein levels of enzymes involved in microRNA biogenesis (Dicer, Drosha, TARPB2, DCGR8, XPO5) was determined by RT PCR and immunoblotting. The effect of hypoxia on microRNAs was determined with microarray studies, RT PCR and reporter assays. RESULTS: In breast cancer lines there was significant reduction of Dicer mRNA and protein levels in cells exposed to hypoxia. This effect was independent of HIF but dependent on the HIF hydroxylase PHD2 and was partly mediated by feedback effects via microRNAs. Furthermore, several other proteins with critical roles in microRNA biogenesis (Drosha, TARBP2 and DCGR8) also showed significant and co-ordinated repression under hypoxic conditions. Despite these substantial alterations no, or modest, changes were observed in mature microRNA production. CONCLUSION: These observations provide further and important interfaces between oxygen availability and gene expression and a potential mechanistic explanation for the reduced levels of microRNAs observed in some cancers. They provide further support for the existence of feedback mechanisms in the regulation of the microRNA biogenesis pathway and the relative stability of microRNAs.


Asunto(s)
Neoplasias de la Mama/patología , MicroARNs/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias de la Mama/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Femenino , Células HT29 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células MCF-7 , Datos de Secuencia Molecular , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
12.
Cancers (Basel) ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893174

RESUMEN

BACKGROUND: Metformin is a first-line therapy for type 2 diabetes as it disrupts cellular metabolism. Despite the association between metformin and lower cancer incidence, the anti-tumour activity of the drug in colorectal cancer (CRC) is incompletely understood. This study identifies underlying molecular mechanisms by which metformin slows colorectal cancer cell proliferation by investigating metformin-associated microRNA (miRNA) and target gene pairs implicated in signalling pathways. METHODS: The present study analysed changes in miRNAs and the coding transcriptome in CRC cells treated with a sublethal dose of metformin, followed by the contextual validation of potential miRNA-target gene pairs. RESULTS: Analyses of small RNA and transcriptome sequencing data revealed 104 miRNAs and 1221 mRNAs to be differentially expressed in CRC cells treated with metformin for 72 h. Interaction networks between differentially expressed miRNAs and putative target mRNAs were identified. Differentially expressed genes were mainly implicated in metabolism and signalling processes, such as the PI3K-Akt and MAPK/ERK pathways. Further validation of potential miRNA-target mRNA pairs revealed that metformin induced miR-2110 and miR-132-3p to target PIK3R3 and, consequently, regulate CRC cell proliferation, cell cycle progression and the PI3K-Akt signalling pathway. Metformin also induced miR-222-3p and miR-589-3p, which directly target STMN1 to inhibit CRC cell proliferation and cell cycle progression. CONCLUSIONS: This study identified novel changes in the coding transcriptome and small non-coding RNAs associated with metformin treatment of CRC cells. Integration of these datasets highlighted underlying mechanisms by which metformin impedes cell proliferation in CRC. Importantly, it identified the post-transcriptional regulation of specific genes that impact both metabolism and cell proliferation.

13.
Front Oncol ; 14: 1358854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38454932

RESUMEN

This scoping review identifies the mechanistic pathways of metformin when used to treat head and neck cancer cells, in the pre-clinical setting. Understanding the underlying mechanisms will inform future experimental designs exploring metformin as a potential adjuvant for head and neck cancer. This scoping review was conducted according to the Joanna-Briggs Institute framework. A structured search identified 1288 studies, of which 52 studies fulfilled the eligibility screen. The studies are presented in themes addressing hallmarks of cancer. Most of the studies demonstrated encouraging anti-proliferative effects in vitro and reduced tumor weight and volume in animal models. However, a few studies have cautioned the use of metformin which supported cancer cell growth under certain conditions.

14.
iScience ; 27(1): 108719, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38226175

RESUMEN

Many viruses produce microRNAs (miRNAs), termed viral miRNAs (v-miRNAs), with the capacity to target host gene expression. Bioinformatic and cell culture studies suggest that SARS-CoV-2 can also generate v-miRNAs. This patient-based study defines the SARS-CoV-2 encoded small RNAs present in nasopharyngeal swabs of patients with COVID-19 infection using small RNA-seq. A specific conserved sequence (CoV2-miR-O8) is defined that is not expressed in other coronaviruses but is preserved in all SARS-CoV-2 variants. CoV2-miR-O8 is highly represented in nasopharyngeal samples from patients with COVID-19 infection, is detected by RT-PCR assays in patients, has features consistent with Dicer and Drosha generation as well as interaction with Argonaute and targets specific human microRNAs.

15.
Nanoscale Adv ; 6(4): 1202-1212, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38356632

RESUMEN

Conventional channel-based microfluidic platforms have gained prominence in controlling the bottom-up formation of phospholipid based nanostructures including liposomes. However, there are challenges in the production of liposomes from rapidly scalable processes. These have been overcome using a vortex fluidic device (VFD), which is a thin film microfluidic platform rather than channel-based, affording ∼110 nm diameter liposomes. The high yielding and high throughput continuous flow process has a 45° tilted rapidly rotating glass tube with an inner hydrophobic surface. Processing is also possible in the confined mode of operation which is effective for labelling pre-VFD-prepared liposomes with fluorophore tags for subsequent mechanistic studies on the fate of liposomes under shear stress in the VFD. In situ small-angle neutron scattering (SANS) established the co-existence of liposomes ∼110 nm with small rafts, micelles, distorted micelles, or sub-micelle size assemblies of phospholipid, for increasing rotation speeds. The equilibria between these smaller entities and ∼110 nm liposomes for a specific rotational speed of the tube is consistent with the spatial arrangement and dimensionality of topological fluid flow regimes in the VFD. The prevalence for the formation of ∼110 nm diameter liposomes establishes that this is typically the most stable structure from the bottom-up self-assembly of the phospholipid and is in accord with dimensions of exosomes.

16.
Mol Carcinog ; 52(6): 459-74, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22308110

RESUMEN

Diet-derived butyrate, a histone deacetylase inhibitor (HDI), decreases proliferation and increases apoptosis in colorectal cancer (CRC) cells via epigenetic changes in gene expression. Other HDIs such as suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) have similar effects. This study examined the role of microRNAs (miRNAs) in mediating the chemo-protective effects of HDIs, and explored functions of the oncogenic miR-17-92 cluster. The dysregulated miRNA expression observed in HT29 and HCT116 CRC cells could be epigenetically altered by butyrate, SAHA and TSA. These HDIs decreased expression of miR-17-92 cluster miRNAs (P < 0.05), with a corresponding increase in miR-17-92 target genes, including PTEN, BCL2L11, and CDKN1A (P < 0.05). The decrease in miR-17-92 expression may be partly responsible for the anti-proliferative effects of HDIs, with introduction of miR-17-92 cluster miRNA mimics reversing this effect and decreasing levels of PTEN, BCL2L11, and CDKN1A (P < 0.05). The growth effects of HDIs may be mediated by changes in miRNA activity, with down-regulation of the miR-17-92 cluster a plausible mechanism to explain some of the chemo-protective effects of HDIs. Of the miR-17-92 cluster miRNAs, miR-19a and miR-19b were primarily responsible for promoting proliferation, while miR-18a acted in opposition to other cluster members to decrease growth. NEDD9 and CDK19 were identified as novel miR-18a targets and were shown to be pro-proliferative genes, with RNA interference of their transcripts decreasing proliferation in CRC cells. This is the first study to identify competing roles for miR-17-92 cluster members, in the context of HDI-induced changes in CRC cells.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Ácido Butírico/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , MicroARNs/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Neoplasias Colorrectales/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Proteínas de la Membrana/genética , Fosfohidrolasa PTEN/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogénicas/genética , ARN Largo no Codificante , ARN Mensajero/genética , Transfección , Vorinostat
17.
BMC Gastroenterol ; 13: 4, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23297865

RESUMEN

BACKGROUND: Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis) is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett's oesophagus. Barrett's oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett's oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett's oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis. METHODS: Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A). RESULTS: miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation. CONCLUSIONS: Elevated miR-143, miR-145 and miR-205 expression was observed in oesophageal squamous mucosa of individuals with ulcerative oesophagitis. These miRNAs localised to the basal layer of the oesophageal epithelium. They reduced proliferation and increased apoptosis, and may play roles in regulating epithelial restoration in response to injury caused by gastro-oesophageal reflux.


Asunto(s)
Esófago/fisiopatología , Reflujo Gastroesofágico/fisiopatología , MicroARNs/fisiología , Apoptosis , Proteína Morfogenética Ósea 4/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Esófago/metabolismo , Esófago/patología , Reflujo Gastroesofágico/metabolismo , Reflujo Gastroesofágico/patología , Humanos , Queratina-14/metabolismo , Queratina-8/metabolismo , Persona de Mediana Edad , Membrana Mucosa/metabolismo , Membrana Mucosa/patología , Membrana Mucosa/fisiopatología
18.
Nucleic Acids Res ; 39(13): 5658-68, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21427086

RESUMEN

The Ago2 component of the RNA-induced silencing complex (RISC) is an endonuclease that cleaves mRNAs that base pair with high complementarity to RISC-bound microRNAs. Many examples of such direct cleavage have been identified in plants, but not in vertebrates, despite the conservation of catalytic capacity in vertebrate Ago2. We performed parallel analysis of RNA ends (PAREs), a deep sequencing approach that identifies 5'-phosphorylated, polyadenylated RNAs, to detect potential microRNA-directed mRNA cleavages in mouse embryo and adult tissues. We found that numerous mRNAs are potentially targeted for cleavage by endogenous microRNAs, but at very low levels relative to the mRNA abundance, apart from miR-151-5p-guided cleavage of the N4BP1 mRNA. We also find numerous examples of non-miRNA-directed cleavage, including cleavage of a group of mRNAs within a CA-repeat consensus sequence. The PARE analysis also identified many examples of adenylated small non-coding RNAs, including microRNAs, tRNA processing intermediates and various other small RNAs, consistent with adenylation being part of a widespread proof-reading and/or degradation pathway for small RNAs.


Asunto(s)
Endorribonucleasas/metabolismo , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Animales , Exorribonucleasas/metabolismo , Humanos , Ratones , Poliadenilación , Procesamiento Postranscripcional del ARN , ARN Mensajero/química , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Análisis de Secuencia de ARN
19.
Open Biol ; 13(4): 230021, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37042113

RESUMEN

Expression and activity of the AMP-activated protein kinase (AMPK) α1 catalytic subunit of the heterotrimeric kinase significantly correlates with poor outcome for colorectal cancer patients. Hence there is considerable interest in uncovering signalling vulnerabilities arising from this oncogenic elevation of AMPKα1 signalling. We have therefore attenuated mammalian target of rapamycin (mTOR) control of AMPKα1 to generate a mutant colorectal cancer in which AMPKα1 signalling is elevated because AMPKα1 serine 347 cannot be phosphorylated by mTORC1. The elevated AMPKα1 signalling in this HCT116 α1.S347A cell line confers hypersensitivity to growth inhibition by metformin. Complementary chemical approaches confirmed this relationship in both HCT116 and the genetically distinct HT29 colorectal cells, as AMPK activators imposed vulnerability to growth inhibition by metformin in both lines. Growth inhibition by metformin was abolished when AMPKα1 kinase was deleted. We conclude that elevated AMPKα1 activity modifies the signalling architecture in such a way that metformin treatment compromises cell proliferation. Not only does this mutant HCT116 AMPKα1-S347A line offer an invaluable resource for future studies, but our findings suggest that a robust biomarker for chronic AMPKα1 activation for patient stratification could herald a place for the well-tolerated drug metformin in colorectal cancer therapy.


Asunto(s)
Neoplasias Colorrectales , Metformina , Humanos , Metformina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Fosforilación , Transducción de Señal
20.
Sci Adv ; 9(43): eadf1332, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37878712

RESUMEN

Cancers in the central nervous system resist therapies effective in other cancers, possibly due to the unique biochemistry of the human brain microenvironment composed of cerebrospinal fluid (CSF). However, the impact of CSF on cancer cells and therapeutic efficacy is unknown. Here, we examined the effect of human CSF on glioblastoma (GBM) tumors from 25 patients. We found that CSF induces tumor cell plasticity and resistance to standard GBM treatments (temozolomide and irradiation). We identified nuclear protein 1 (NUPR1), a transcription factor hampering ferroptosis, as a mediator of therapeutic resistance in CSF. NUPR1 inhibition with a repurposed antipsychotic, trifluoperazine, enhanced the killing of GBM cells resistant to chemoradiation in CSF. The same chemo-effective doses of trifluoperazine were safe for human neurons and astrocytes derived from pluripotent stem cells. These findings reveal that chemoradiation efficacy decreases in human CSF and suggest that combining trifluoperazine with standard care may improve the survival of patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Trifluoperazina/farmacología , Trifluoperazina/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacología , Quimioradioterapia , Línea Celular Tumoral , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA