Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Nature ; 609(7927): 512-516, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104556

RESUMEN

Water in nanoscale cavities is ubiquitous and of central importance to everyday phenomena in geology and biology. However, the properties of nanoscale water can be substantially different from those of bulk water, as shown, for example, by the anomalously low dielectric constant of water in nanochannels1, near frictionless water flow2 or the possible existence of a square ice phase3. Such properties suggest that nanoconfined water could be engineered for technological applications in nanofluidics4, electrolyte materials5 and water desalination6. Unfortunately, challenges in experimentally characterizing water at the nanoscale and the high cost of first-principles simulations have prevented the molecular-level understanding required to control the behaviour of water. Here we combine a range of computational approaches to enable a first-principles-level investigation of a single layer of water within a graphene-like channel. We find that monolayer water exhibits surprisingly rich and diverse phase behaviour that is highly sensitive to temperature and the van der Waals pressure acting within the nanochannel. In addition to multiple molecular phases with melting temperatures varying non-monotonically by more than 400 kelvins with pressure, we predict a hexatic phase, which is an intermediate between a solid and a liquid, and a superionic phase with a high electrical conductivity exceeding that of battery materials. Notably, this suggests that nanoconfinement could be a promising route towards superionic behaviour under easily accessible conditions.

2.
Nature ; 609(7929): 942-947, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35896149

RESUMEN

Single atoms or ions on surfaces affect processes from nucleation1 to electrochemical reactions2 and heterogeneous catalysis3. Transmission electron microscopy is a leading approach for visualizing single atoms on a variety of substrates4,5. It conventionally requires high vacuum conditions, but has been developed for in situ imaging in liquid and gaseous environments6,7 with a combined spatial and temporal resolution that is unmatched by any other method-notwithstanding concerns about electron-beam effects on samples. When imaging in liquid using commercial technologies, electron scattering in the windows enclosing the sample and in the liquid generally limits the achievable resolution to a few nanometres6,8,9. Graphene liquid cells, on the other hand, have enabled atomic-resolution imaging of metal nanoparticles in liquids10. Here we show that a double graphene liquid cell, consisting of a central molybdenum disulfide monolayer separated by hexagonal boron nitride spacers from the two enclosing graphene windows, makes it possible to monitor, with atomic resolution, the dynamics of platinum adatoms on the monolayer in an aqueous salt solution. By imaging more than 70,000 single adatom adsorption sites, we compare the site preference and dynamic motion of the adatoms in both a fully hydrated and a vacuum state. We find a modified adsorption site distribution and higher diffusivities for the adatoms in the liquid phase compared with those in vacuum. This approach paves the way for in situ liquid-phase imaging of chemical processes with single-atom precision.

3.
Proc Natl Acad Sci U S A ; 119(31): e2205347119, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878028

RESUMEN

Crystal nucleation is one of the most fundamental processes in the physical sciences and almost always occurs heterogeneously with the aid of a nucleating substrate. No example of nucleation is more ubiquitous and impactful than the formation of ice, vital to fields as diverse as geology, biology, aeronautics, and climate science. However, despite considerable effort, we still cannot predict a priori the efficacy of a nucleating agent. Here we utilize deep learning methods to accurately predict nucleation ability from images of room temperature liquid water-generated from molecular dynamics simulations-on a broad range of substrates. The resulting model, named IcePic, can rapidly and accurately infer nucleation ability, eliminating the requirement for either notoriously expensive simulations or direct experimental measurement. In an online poll, IcePic was found to significantly outperform humans in predicting the ice nucleating efficacy of materials. By analyzing the typical errors made by humans, as well as the application of reverse interpretation methods, physical insights into the role the water contact layer plays in ice nucleation have been obtained. Moving forward, we suggest that IcePic can be used as an easy, cheap, and rapid way to discern the nucleation ability of substrates, also with potential for learning other properties related to interfacial water.

4.
Nano Lett ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592099

RESUMEN

The nature of ion-ion interactions in electrolytes confined to nanoscale pores has important implications for energy storage and separation technologies. However, the physical effects dictating the structure of nanoconfined electrolytes remain debated. Here we employ machine-learning-based molecular dynamics simulations to investigate ion-ion interactions with density functional theory level accuracy in a prototypical confined electrolyte, aqueous NaCl within graphene slit pores. We find that the free energy of ion pairing in highly confined electrolytes deviates substantially from that in bulk solutions, observing a decrease in contact ion pairing but an increase in solvent-separated ion pairing. These changes arise from an interplay of ion solvation effects and graphene's electronic structure. Notably, the behavior observed from our first-principles-level simulations is not reproduced even qualitatively with the classical force fields conventionally used to model these systems. The insight provided in this work opens new avenues for predicting and controlling the structure of nanoconfined electrolytes.

5.
Faraday Discuss ; 249(0): 50-68, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37799072

RESUMEN

Vibrational spectroscopy is a powerful approach to visualising interfacial phenomena. However, extracting structural and dynamical information from vibrational spectra is a challenge that requires first-principles simulations, including non-Condon and quantum nuclear effects. We address this challenge by developing a machine-learning enhanced first-principles framework to speed up predictive modelling of infrared, Raman, and sum-frequency generation spectra. Our approach uses machine learning potentials that encode quantum nuclear effects to generate quantum trajectories using simple molecular dynamics efficiently. In addition, we reformulate bulk and interfacial selection rules to express them unambiguously in terms of the derivatives of polarisation and polarisabilities of the whole system and predict these derivatives efficiently using fully-differentiable machine learning models of dielectric response tensors. We demonstrate our framework's performance by predicting the IR, Raman, and sum-frequency generation spectra of liquid water, ice and the water-air interface by achieving near quantitative agreement with experiments at nearly the same computational efficiency as pure classical methods. Finally, to aid the experimental discovery of new phases of nanoconfined water, we predict the temperature-dependent vibrational spectra of monolayer water across the solid-hexatic-liquid phases transition.

6.
Faraday Discuss ; 249(0): 210-228, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37791990

RESUMEN

Nucleation in small volumes of water has garnered renewed interest due to the relevance of pore condensation and freezing under conditions of low partial pressures of water, such as in the upper troposphere. Molecular simulations can in principle provide insight on this process at the molecular scale that is challenging to achieve experimentally. However, there are discrepancies in the literature as to whether the rate in confined systems is enhanced or suppressed relative to bulk water at the same temperature and pressure. In this study, we investigate the extent to which the size of the critical nucleus and the rate at which it grows in thin films of water are affected by the thickness of the film. Our results suggest that nucleation remains bulk-like in films that are barely large enough accommodate a critical nucleus. This conclusion seems robust to the presence of physical confining boundaries. We also discuss the difficulties in unambiguously determining homogeneous nucleation rates in nanoscale systems, owing to the challenges in defining the volume. Our results suggest any impact on a film's thickness on the rate is largely inconsequential for present day experiments.

7.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33766916

RESUMEN

The freezing of water into ice is one of the most important processes in the physical sciences. However, it is still not understood at the molecular level. In particular, the crystallization of cubic ice ([Formula: see text])-rather than the traditional hexagonal polytype ([Formula: see text])-has become an increasingly debated topic. Although evidence for [Formula: see text] is thought to date back almost 400 y, it is only in the last year that pure [Formula: see text] has been made in the laboratory, and these processes involved high-pressure ice phases. Since this demonstrates that pure [Formula: see text] can form, the question naturally arises if [Formula: see text] can be made from liquid water. With this in mind, we have performed a high-throughput computational screening study involving molecular dynamics simulations of nucleation on over 1,100 model substrates. From these simulations, we find that 1) many different substrates can promote the formation of pristine [Formula: see text]; 2) [Formula: see text] can be selectively nucleated for even the mildest supercooling; 3) the water contact layer's resemblance to a face of ice is the key factor determining the polytype selectivity and nucleation temperature, independent of which polytype is promoted; and 4) substrate lattice match to ice is not indicative of the polytype obtained. Through this study, we have deepened understanding of the interplay of heterogeneous nucleation and ice I polytypism and suggest routes to [Formula: see text] More broadly, the substrate design methodology presented here combined with the insight gained can be used to understand and control polymorphism and stacking disorder in materials in general.

8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518232

RESUMEN

Simulation techniques based on accurate and efficient representations of potential energy surfaces are urgently needed for the understanding of complex systems such as solid-liquid interfaces. Here we present a machine learning framework that enables the efficient development and validation of models for complex aqueous systems. Instead of trying to deliver a globally optimal machine learning potential, we propose to develop models applicable to specific thermodynamic state points in a simple and user-friendly process. After an initial ab initio simulation, a machine learning potential is constructed with minimum human effort through a data-driven active learning protocol. Such models can afterward be applied in exhaustive simulations to provide reliable answers for the scientific question at hand or to systematically explore the thermal performance of ab initio methods. We showcase this methodology on a diverse set of aqueous systems comprising bulk water with different ions in solution, water on a titanium dioxide surface, and water confined in nanotubes and between molybdenum disulfide sheets. Highlighting the accuracy of our approach with respect to the underlying ab initio reference, the resulting models are evaluated in detail with an automated validation protocol that includes structural and dynamical properties and the precision of the force prediction of the models. Finally, we demonstrate the capabilities of our approach for the description of water on the rutile titanium dioxide (110) surface to analyze the structure and mobility of water on this surface. Such machine learning models provide a straightforward and uncomplicated but accurate extension of simulation time and length scales for complex systems.

9.
Nano Lett ; 23(2): 580-587, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36626824

RESUMEN

Friction at water-carbon interfaces remains a major puzzle with theories and simulations unable to explain experimental trends in nanoscale waterflow. A recent theoretical framework─quantum friction (QF)─proposes to resolve these experimental observations by considering nonadiabatic coupling between dielectric fluctuations in water and graphitic surfaces. Here, using a classical model that enables fine-tuning of the solid's dielectric spectrum, we provide evidence from simulations in general support of QF. In particular, as features in the solid's dielectric spectrum begin to overlap with water's librational and Debye modes, we find an increase in friction in line with that proposed by QF. At the microscopic level, we find that this contribution to friction manifests more distinctly in the dynamics of the solid's charge density than that of water. Our findings suggest that experimental signatures of QF may be more pronounced in the solid's response rather than liquid water's.

10.
Nano Lett ; 23(11): 4793-4799, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37195627

RESUMEN

Solvents are increasingly known to influence chemical reactivity. However, the microscopic origin of solvent effects is scarcely understood, particularly at the individual molecule level. To shed light on this, we explored a well-defined model system of water (D2O) and carbon monoxide on a single-crystal copper surface with time-lapsed low-temperature scanning tunneling microscopy (STM) and ab initio calculations. Through detailed measurements on a time scale of minutes to hours at the limit of single-molecule solvation, we find that at cryogenic temperatures CO-D2O complexes are more mobile than individual CO or water molecules. We also obtain detailed mechanistic insights into the motion of the complex. In diffusion-limited surface reactions, such a solvent-triggered increase in mobility would substantially increase the reaction yield.

11.
J Am Chem Soc ; 145(46): 25372-25381, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948071

RESUMEN

The adsorption energy of a molecule onto the surface of a material underpins a wide array of applications, spanning heterogeneous catalysis, gas storage, and many more. It is the key quantity where experimental measurements and theoretical calculations meet, with agreement being necessary for reliable predictions of chemical reaction rates and mechanisms. The prototypical molecule-surface system is CO adsorbed on MgO, but despite intense scrutiny from theory and experiment, there is still no consensus on its adsorption energy. In particular, the large cost of accurate many-body methods makes reaching converged theoretical estimates difficult, generating a wide range of values. In this work, we address this challenge, leveraging the latest advances in diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] to obtain accurate predictions for CO on MgO. These reliable theoretical estimates allow us to evaluate the inconsistencies in published temperature-programed desorption experiments, revealing that they arise from variations in employed pre-exponential factors. Utilizing this insight, we derive new experimental estimates of the (electronic) adsorption energy with a (more) precise pre-exponential factor. As a culmination of all of this effort, we are able to reach a consensus between multiple theoretical calculations and multiple experiments for the first time. In addition, we show that our recently developed cluster-based CCSD(T) approach provides a low-cost route toward achieving accurate adsorption energies. This sets the stage for affordable and reliable theoretical predictions of chemical reactions on surfaces to guide the realization of new catalysts and gas storage materials.

12.
Phys Rev Lett ; 130(10): 106202, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36962030

RESUMEN

Understanding the molecular and electronic structure of solvated ions at surfaces requires an analysis of the interactions between the surface, the ions, and the solvent environment on equal footing. Here, we tackle this challenge by exploring the initial stages of Cs^{+} hydration on a Cu(111) surface by combining experiment and theory. Remarkably, we observe "inside-out" solvation of Cs^{+} ions, i.e., their preferential location at the perimeter of the water clusters on the metal surface. In addition, water-Cs complexes containing multiple Cs^{+} ions are observed to form at these surfaces. Established models based on maximum ion-water coordination and conventional solvation models cannot account for this situation, and the complex interplay of microscopic interactions is the key to a fundamental understanding.

13.
Nano Lett ; 22(1): 340-346, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34958578

RESUMEN

Water diffusion across the surfaces of materials is of importance to disparate processes such as water purification, ice formation, and more. Despite reports of rapid water diffusion on surfaces the molecular level, details of such processes remain unclear. Here, with scanning tunneling microscopy, we observe structural rearrangements and diffusion of water trimers at unexpectedly low temperatures (<10 K) on a copper surface, temperatures at which water monomers or other clusters do not diffuse. Density functional theory calculations reveal a facile trimer diffusion process involving transformations between elongated and almost cyclic conformers in an inchworm-like manner. These subtle intermolecular reorientations maintain an optimal balance of hydrogen-bonding and water-surface interactions throughout the process. This work shows that the diffusion of hydrogen-bonded clusters can occur at exceedingly low temperatures without the need for hydrogen bond breakage or exchange; findings that will influence Ostwald ripening of ice nanoclusters and hydrogen bonded clusters in general.


Asunto(s)
Hidrógeno , Agua , Difusión , Hidrógeno/química , Enlace de Hidrógeno , Temperatura , Agua/química
14.
Faraday Discuss ; 235(0): 406-415, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35388822

RESUMEN

Gaining a fundamental understanding of crystal nucleation processes in metal alloys is crucial for the development and design of high-performance materials with targeted properties. Yet, crystallization is a complex non-equilibrium process and, despite having been studied for decades, the microscopic aspects that govern the crystallization mechanism of a material remain elusive to date. Recent evidence shows that the spatial heterogeneity in the supercooled liquid, characterised by extended regions with distinctive mobility and order, may be a key microscopic factor that determines the mechanism of crystal nucleation. These findings have advanced our view of the fundamental nature of crystallization, as most research has assumed that crystal clusters nucleate from random fluctuations in a 'homogeneous' liquid. Here, by analysing transition path sampling trajectories, we show that dynamical heterogeneity plays a key role in the mechanism of crystal nucleation in an elemental metal, nickel. Our results demonstrate that crystallization occurs preferentially in regions of low mobility in the supercooled liquid, evidencing the collective dynamical nature of crystal nucleation in Ni. In addition, our results show that low mobility regions form before and spatially overlap with pre-ordered domains that act as precursors to the crystal phase that subsequently emerges. Our results show a clear link between dynamical and structural heterogeneity in the supercooled liquid and its impact on the nucleation mechanism, revealing microscopic descriptors that could pave a novel way to control crystallization processes in metals.


Asunto(s)
Níquel , Cristalización
15.
J Chem Phys ; 156(16): 164501, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35490004

RESUMEN

In principle, the answer to the posed titular question is undoubtedly "yes." But in practice, requisite reference data for homogeneous systems have been obtained with a treatment of intermolecular interactions that is different from that typically employed for heterogeneous systems. In this article, we assess the impact of the choice of truncation scheme when comparing water in homogeneous and inhomogeneous environments. Specifically, we use explicit free energy calculations and a simple mean field analysis to demonstrate that using the "cut-and-shift" version of the Lennard-Jones potential (common to most simple point charge models of water) results in a systematic increase in the melting temperature of ice Ih. In addition, by drawing an analogy between a change in cutoff and a change in pressure, we use existing literature data for homogeneous ice nucleation at negative pressures to suggest that enhancements due to heterogeneous nucleation may have been overestimated by several orders of magnitude.

16.
J Chem Phys ; 156(12): 124704, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35364886

RESUMEN

The O vacancy (Ov) formation energy, EOv, is an important property of a metal-oxide, governing its performance in applications such as fuel cells or heterogeneous catalysis. These defects are routinely studied with density functional theory (DFT). However, it is well-recognized that standard DFT formulations (e.g., the generalized gradient approximation) are insufficient for modeling the Ov, requiring higher levels of theory. The embedded cluster method offers a promising approach to compute EOv accurately, giving access to all electronic structure methods. Central to this approach is the construction of quantum(-mechanically treated) clusters placed within suitable embedding environments. Unfortunately, current approaches to constructing the quantum clusters either require large system sizes, preventing application of high-level methods, or require significant manual input, preventing investigations of multiple systems simultaneously. In this work, we present a systematic and general quantum cluster design protocol that can determine small converged quantum clusters for studying the Ov in metal-oxides with accurate methods, such as local coupled cluster with single, double, and perturbative triple excitations. We apply this protocol to study the Ov in the bulk and surface planes of rutile TiO2 and rock salt MgO, producing the first accurate and well-converged determinations of EOv with this method. These reference values are used to benchmark exchange-correlation functionals in DFT, and we find that all the studied functionals underestimate EOv, with the average error decreasing along the rungs of Jacob's ladder. This protocol is automatable for high-throughput calculations and can be generalized to study other point defects or adsorbates.

17.
J Chem Phys ; 157(13): 134701, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36208996

RESUMEN

Ice is one of the most important and interesting molecular crystals, exhibiting a rich and evolving phase diagram. Recent discoveries mean that there are now 20 distinct polymorphs; a structural diversity that arises from a delicate interplay of hydrogen bonding and van der Waals dispersion forces. This wealth of structures provides a stern test of electronic structure theories, with Density Functional Theory (DFT) often not able to accurately characterize the relative energies of the various ice polymorphs. Thanks to recent advances that enable the accurate and efficient treatment of molecular crystals with Diffusion Monte Carlo (DMC), we present here the DMC-ICE13 dataset; a dataset of lattice energies of 13 ice polymorphs. This dataset encompasses the full structural complexity found in the ambient and high-pressure molecular ice polymorphs, and when experimental reference energies are available, our DMC results deliver sub-chemical accuracy. Using this dataset, we then perform an extensive benchmark of a broad range of DFT functionals. Of the functionals considered, revPBE-D3 and RSCAN reproduce reference absolute lattice energies with the smallest error, while optB86b-vdW and SCAN+rVV10 have the best performance on the relative lattice energies. Our results suggest that a single functional achieving reliable performance for all phases is still missing, and that care is needed in the selection of the most appropriate functional for the desired application. The insights obtained here may also be relevant to liquid water and other hydrogen-bonded and dispersion-bonded molecular crystals.

18.
Proc Natl Acad Sci U S A ; 116(6): 2009-2014, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30670640

RESUMEN

When an ice crystal is born from liquid water, two key changes occur: (i) The molecules order and (ii) the mobility of the molecules drops as they adopt their lattice positions. Most research on ice nucleation (and crystallization in general) has focused on understanding the former with less attention paid to the latter. However, supercooled water exhibits fascinating and complex dynamical behavior, most notably dynamical heterogeneity (DH), a phenomenon where spatially separated domains of relatively mobile and immobile particles coexist. Strikingly, the microscopic connection between the DH of water and the nucleation of ice has yet to be unraveled directly at the molecular level. Here we tackle this issue via computer simulations which reveal that (i) ice nucleation occurs in low-mobility regions of the liquid, (ii) there is a dynamical incubation period in which the mobility of the molecules drops before any ice-like ordering, and (iii) ice-like clusters cause arrested dynamics in surrounding water molecules. With this we establish a clear connection between dynamics and nucleation. We anticipate that our findings will pave the way for the examination of the role of dynamical heterogeneities in heterogeneous and solution-based nucleation.

19.
Nano Lett ; 21(19): 8143-8150, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34519502

RESUMEN

Graphene's intrinsically corrugated and wrinkled topology fundamentally influences its electronic, mechanical, and chemical properties. Experimental techniques allow the manipulation of pristine graphene and the controlled production of defects which allows one to control the atomic out-of-plane fluctuations and thus tune graphene's properties. Here, we perform large scale machine learning-driven molecular dynamics simulations to understand the impact of defects on the structure of graphene. We find that defects cause significantly higher corrugation leading to a strongly wrinkled surface. The magnitude of this structural transformation strongly depends on the defect concentration and specific type of defect. Analyzing the atomic neighborhood of the defects reveals that the extent of these morphological changes depends on the preferred geometrical orientation and the interactions between defects. While our work highlights that defects can strongly affect graphene's morphology, it also emphasizes the differences between distinct types by linking the global structure to the local environment of the defects.


Asunto(s)
Grafito , Electrónica , Simulación de Dinámica Molecular
20.
Phys Rev Lett ; 126(13): 136001, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33861106

RESUMEN

The fundamental understanding of crystallization, in terms of microscopic kinetic and thermodynamic details, remains a key challenge in the physical sciences. Here, by using in situ graphene liquid cell transmission electron microscopy, we reveal the atomistic mechanism of NaCl crystallization from solutions confined within graphene cells. We find that rock salt NaCl forms with a peculiar hexagonal morphology. We also see the emergence of a transitory graphitelike phase, which may act as an intermediate in a two-step pathway. With the aid of density functional theory calculations, we propose that these observations result from a delicate balance between the substrate-solute interaction and thermodynamics under confinement. Our results highlight the impact of confinement on both the kinetics and thermodynamics of crystallization, offering new insights into heterogeneous crystallization theory and a potential avenue for materials design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA