Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(8): 086703, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898091

RESUMEN

Unidirectional spin Hall magnetoresistance (USMR) has been widely reported in the heavy metal/ferromagnet bilayer systems. We observe the USMR in Pt/α-Fe_{2}O_{3} bilayers where the α-Fe_{2}O_{3} is an antiferromagnetic (AFM) insulator. Systematic field and temperature dependent measurements confirm the magnonic origin of the USMR. The appearance of AFM-USMR is driven by the imbalance of creation and annihilation of AFM magnons by spin orbit torque due to the thermal random field. However, unlike its ferromagnetic counterpart, theoretical modeling reveals that the USMR in Pt/α-Fe_{2}O_{3} is determined by the antiferromagtic magnon number with a non-monotonic field dependence. Our findings extend the generality of the USMR which pave the ways for the highly sensitive detection of AFM spin state.

2.
Nat Commun ; 13(1): 3659, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760929

RESUMEN

Electrical switching of antiferromagnets is an exciting recent development in spintronics, which promises active antiferromagnetic devices with high speed and low energy cost. In this emerging field, there is an active debate about the mechanisms of current-driven switching of antiferromagnets. For heavy-metal/ferromagnet systems, harmonic characterization is a powerful tool to quantify current-induced spin-orbit torques and spin Seebeck effect and elucidate current-induced switching. However, harmonic measurement of spin-orbit torques has never been verified in antiferromagnetic heterostructures. Here, we report harmonic measurements in Pt/α-Fe2O3 bilayers, which are explained by our modeling of higher-order harmonic voltages. As compared with ferromagnetic heterostructures where all current-induced effects appear in the second harmonic signals, the damping-like torque and thermally-induced magnetoelastic effect contributions in Pt/α-Fe2O3 emerge in the third harmonic voltage. Our results provide a new path to probe the current-induced magnetization dynamics in antiferromagnets, promoting the application of antiferromagnetic spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA