Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
New Phytol ; 235(5): 1957-1976, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35633111

RESUMEN

Histone lysine methylations (HLMs) are implicated in control of gene expression in different eukaryotes. However, the role of HLMs in regulating desirable crop traits and the enzymes involved in these modifications are poorly understood. We studied the functions of tomato histone H3 lysine methyltransferases SET Domain Group 33 (SDG33) and SDG34 in biotic and abiotic stress responses. SDG33 and SDG34 gene edited mutants were altered in H3K36 and H3K4 methylations, and expression of genes involved in diverse processes and responses to biotic and abiotic stimuli. The double but not the single mutants show resistance to the fungal pathogen Botrytis cinerea. Interestingly, single mutants were tolerant to drought and the double mutant showed superior tolerance and plant growth consistent with independent and additive functions. Mutants maintained higher water status during drought and improved recovery and survival after lapse of drought. Notably, diminution of H3K4 and H3K36 trimethylation and expression of negative regulators in challenged plants contributes to stress tolerance of the mutants. Mutations in SDG33 and SDG34 are likely to remove predisposition to biotic and abiotic stress by disrupting permissive transcriptional context promoting expression of negative regulatory factors. These allows improvement of stress and pathogen tolerance, without growth trade-offs, through modification of histone epigenetic marks.


Asunto(s)
Solanum lycopersicum , Regulación de la Expresión Génica de las Plantas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Solanum lycopersicum/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , Dominios PR-SET
2.
Plant Physiol ; 184(3): 1363-1377, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32907885

RESUMEN

Advancements in phenotyping techniques capable of rapidly and nondestructively detecting impacts of drought on crops are necessary to meet the 21st-century challenge of food security. Here, we describe the use of hyperspectral reflectance to predict variation in physiological and anatomical leaf traits related with water status under varying water availability in six maize (Zea mays) hybrids that differ in yield stability under drought. We also assessed relationships among traits and collections of traits with yield stability. Measurements were collected in both greenhouse and field environments, with plants exposed to different levels of water stress or to natural water availability, respectively. Leaf spectral measurements were paired with a number of physiological and anatomical reference measurements, and predictive spectral models were constructed using a partial least-squares regression approach. All traits were relatively well predicted by spectroscopic models, with external validation (i.e. by applying partial least-squares regression coefficients on a dataset distinct from the one used for calibration) goodness-of-fit (R 2 ) ranging from 0.37 to 0.89 and normalized error ranging from 12% to 21%. Correlations between reference and predicted data were statistically similar for both greenhouse and field data. Our findings highlight the capability of vegetation spectroscopy to rapidly and nondestructively identify a number of foliar functional traits affected by drought that can be used as indicators of plant water status. Although we did not detect trait coordination with yield stability in the hybrids used in this study, expanding the range of functional traits estimated by hyperspectral data can help improve trait-based breeding approaches.


Asunto(s)
Deshidratación/genética , Deshidratación/fisiopatología , Sequías , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Zea mays/anatomía & histología , Zea mays/genética , Productos Agrícolas/anatomía & histología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Variación Genética , Genotipo , Fenotipo , Hojas de la Planta/fisiología , Análisis Espectral/métodos , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Estados Unidos , Agua/metabolismo , Zea mays/fisiología
3.
Nat Rev Genet ; 16(4): 237-51, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25752530

RESUMEN

Crop yield reduction as a consequence of increasingly severe climatic events threatens global food security. Genetic loci that ensure productivity in challenging environments exist within the germplasm of crops, their wild relatives and species that are adapted to extreme environments. Selective breeding for the combination of beneficial loci in germplasm has improved yields in diverse environments throughout the history of agriculture. An effective new paradigm is the targeted identification of specific genetic determinants of stress adaptation that have evolved in nature and their precise introgression into elite varieties. These loci are often associated with distinct regulation or function, duplication and/or neofunctionalization of genes that maintain plant homeostasis.


Asunto(s)
Adaptación Fisiológica/genética , Productos Agrícolas/química , Productos Agrícolas/genética , Ingeniería Genética , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo , Estrés Fisiológico/genética
4.
Ann Bot ; 124(3): 399-409, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31222279

RESUMEN

BACKGROUND AND AIMS: Heteroblastic plant species, whose morphology or growth habit changes suddenly during development, offer unique opportunities to investigate the role of selection in canalizing development or increasing the adaptive importance of plasticity. Leaf forms of the Hawaiian tree Acacia koa (koa) change morphologically and physiologically during the first year of growth, providing time to study abiotic factors influencing transition rates relative to other Acacia species. METHODS: The roles of light and water availability in triggering transition to the mature leaf form in contrasting (wet/dry) ecotypes of koa were investigated using a novel modelling technique to distinguish between chronological and ontogenetic controls in triggering transition. A light quality treatment was included to test interactions of heterophylly (the presence of multiple leaf forms) with heteroblastic processes on the resulting phenotype at transition. KEY RESULTS: Increased light intensity increased transition rates, but reduced red to far-red light (R:FR) ratios did not affect transition rates, solidifying the current paradigm of heteroblasty. However, evidence was found for earlier transition ontogenetically under water stress, which is not part of the current paradigm and could differentiate the role of heteroblasty in some Acacia species versus other heteroblastic species. Ecotypic responses also indicate that plasticity of development could vary across koa's range and the adaptive significance of heteroblasty could be marginalized or amplified dependent on the disparate selective pressures present across koa's range. CONCLUSIONS: The use of novel survival functions and a species with an elongated transition time helped to elucidate abiotic modifiers of ontogenetic trajectories. Differences in ontogenetic trajectories between contrasting ecotypes suggest that ongoing climate and land use change will have non-uniform effects on koa regeneration and establishment dynamics across its range.


Asunto(s)
Acacia , Hawaii , Fenotipo , Hojas de la Planta , Árboles
5.
J Econ Entomol ; 108(3): 1221-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26470249

RESUMEN

Although leaf nitrogen (N) has been shown to increase the suitability of hosts to herbivorous arthropods, the responses of these pests to N fertilization on susceptible and resistant host plants are not well characterized. This study determined how different rates of N fertilization affected injury caused by the potato leafhopper (Empoasca fabae Harris) and the abundance of maple spider mite (Oligonychus aceris (Shimer)) on 'Red Sunset' red maple (Acer rubrum) and 'Autumn Blaze' Freeman maple (Acer×freemanii) during two years in Indiana. N fertilization increased leaf N concentration in both maple cultivars, albeit to a lesser extent during the second year of the study. Overall, Red Sunset maples were more susceptible to E. fabae injury than Autumn Blaze, whereas Autumn Blaze maples supported higher populations of O. aceris. Differences in populations of O. aceris were attributed to differences between communities of stigmaeid and phytoseiid mites on each cultivar. Injury caused by E. fabae increased with N fertilization in a dose-dependent manner in both cultivars. Although N fertilization increased the abundance of O. aceris on both maple cultivars, there was no difference between the 20 and 40 g rates. We suggest the capacity of N fertilization to increase O. aceris on maples could be limited at higher trophic levels by the community of predatory mites.


Asunto(s)
Acer/fisiología , Fertilizantes , Cadena Alimentaria , Hemípteros/fisiología , Nitrógeno/metabolismo , Tetranychidae/fisiología , Ácaros y Garrapatas/crecimiento & desarrollo , Ácaros y Garrapatas/fisiología , Acer/genética , Acer/crecimiento & desarrollo , Animales , Conducta Alimentaria , Agricultura Forestal , Hemípteros/crecimiento & desarrollo , Indiana , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Control Biológico de Vectores , Dinámica Poblacional , Tetranychidae/crecimiento & desarrollo
6.
Plant Direct ; 8(5): e594, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799417

RESUMEN

The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.

7.
Plant Physiol ; 158(2): 1034-45, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22128140

RESUMEN

Transgenic tomato (Solanum lycopersicum) lines overexpressing yeast spermidine synthase (ySpdSyn), an enzyme involved in polyamine (PA) biosynthesis, were developed. These transgenic lines accumulate higher levels of spermidine (Spd) than the wild-type plants and were examined for responses to the fungal necrotrophs Botrytis cinerea and Alternaria solani, bacterial pathogen Pseudomonas syringae pv tomato DC3000, and larvae of the chewing insect tobacco hornworm (Manduca sexta). The Spd-accumulating transgenic tomato lines were more susceptible to B. cinerea than the wild-type plants; however, responses to A. solani, P. syringae, or M. sexta were similar to the wild-type plants. Exogenous application of ethylene precursors, S-adenosyl-Met and 1-aminocyclopropane-1-carboxylic acid, or PA biosynthesis inhibitors reversed the response of the transgenic plants to B. cinerea. The increased susceptibility of the ySpdSyn transgenic tomato to B. cinerea was associated with down-regulation of gene transcripts involved in ethylene biosynthesis and signaling. These data suggest that PA-mediated susceptibility to B. cinerea is linked to interference with the functions of ethylene in plant defense.


Asunto(s)
Botrytis/patogenicidad , Etilenos/metabolismo , Solanum lycopersicum/microbiología , Espermidina/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Solanum lycopersicum/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente
8.
Plant Cell ; 22(12): 4128-41, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21169508

RESUMEN

A goal of modern agriculture is to improve plant drought tolerance and production per amount of water used, referred to as water use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms have yet to be determined. Arabidopsis thaliana GT-2 LIKE 1 (GTL1) loss-of-function mutations result in increased water deficit tolerance and higher integrated WUE by reducing daytime transpiration without a demonstrable reduction in biomass accumulation. gtl1 plants had higher instantaneous WUE that was attributable to ~25% lower transpiration and stomatal conductance but equivalent CO(2) assimilation. Lower transpiration was associated with higher STOMATAL DENSITY AND DISTRIBUTION1 (SDD1) expression and an ~25% reduction in abaxial stomatal density. GTL1 expression occurred in abaxial epidermal cells where the protein was localized to the nucleus, and its expression was downregulated by water stress. Chromatin immunoprecipitation analysis indicated that GTL1 interacts with a region of the SDD1 promoter that contains a GT3 box. An electrophoretic mobility shift assay was used to determine that the GT3 box is necessary for the interaction between GTL1 and the SDD1 promoter. These results establish that GTL1 negatively regulates WUE by modulating stomatal density via transrepression of SDD1.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Arabidopsis/fisiología , Regulación hacia Abajo/fisiología , Sequías , Estomas de Plantas/metabolismo , Serina Endopeptidasas/genética , Agua/metabolismo , Proteínas de Arabidopsis/genética , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica de las Plantas/fisiología , Microscopía Fluorescente , Mutación , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Life (Basel) ; 13(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36836647

RESUMEN

The stomata on leaf surfaces control gas exchange and water loss, closing during dry periods to conserve water. The distribution and size of stomatal complexes is determined by epidermal cell differentiation and expansion during leaf growth. Regulation of these processes in response to water deficit may result in stomatal anatomical plasticity as part of the plant acclimation to drought. We quantified the leaf anatomical plasticity under water-deficit conditions in maize and soybean over two experiments. Both species produced smaller leaves in response to the water deficit, partly due to the reductions in the stomata and pavement cell size, although this response was greater in soybean, which also produced thicker leaves under severe stress, whereas the maize leaf thickness did not change. The stomata and pavement cells were smaller with the reduced water availability in both species, resulting in higher stomatal densities. Stomatal development (measured as stomatal index, SI) was suppressed in both species at the lowest water availability, but to a greater extent in maize than in soybean. The result of these responses is that in maize leaves, the stomatal area fraction (fgc) was consistently reduced in the plants grown under severe but not moderate water deficit, whereas the fgc did not decrease in the water-stressed soybean leaves. The water deficit resulted in the reduced expression of one of two (maize) or three (soybean) SPEECHLESS orthologs, and the expression patterns were correlated with SI. The vein density (VD) increased in both species in response to the water deficit, although the effect was greater in soybean. This study establishes a mechanism of stomatal development plasticity that can be applied to other species and genotypes to develop or investigate stomatal development plasticity.

10.
PLoS Genet ; 5(5): e1000492, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19461889

RESUMEN

Though central to our understanding of how roots perform their vital function of scavenging water and solutes from the soil, no direct genetic evidence currently exists to support the foundational model that suberin acts to form a chemical barrier limiting the extracellular, or apoplastic, transport of water and solutes in plant roots. Using the newly characterized enhanced suberin1 (esb1) mutant, we established a connection in Arabidopsis thaliana between suberin in the root and both water movement through the plant and solute accumulation in the shoot. Esb1 mutants, characterized by increased root suberin, were found to have reduced day time transpiration rates and increased water-use efficiency during their vegetative growth period. Furthermore, these changes in suberin and water transport were associated with decreases in the accumulation of Ca, Mn, and Zn and increases in the accumulation of Na, S, K, As, Se, and Mo in the shoot. Here, we present direct genetic evidence establishing that suberin in the roots plays a critical role in controlling both water and mineral ion uptake and transport to the leaves. The changes observed in the elemental accumulation in leaves are also interpreted as evidence that a significant component of the radial root transport of Ca, Mn, and Zn occurs in the apoplast.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Lípidos/genética , Secuencia de Bases , Mapeo Cromosómico , ADN de Plantas/genética , Genes de Plantas , Metabolismo de los Lípidos/genética , Minerales/metabolismo , Mutación , Fenotipo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Polimorfismo Genético , Agua/metabolismo
11.
Plant J ; 58(2): 347-60, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19143995

RESUMEN

Plants deploy diverse molecular and cellular mechanisms to survive in stressful environments. The tomato (Solanum lycopersicum) abscisic acid-induced myb1 (SlAIM1) gene encoding an R2R3MYB transcription factor is induced by pathogens, plant hormones, salinity and oxidative stress, suggesting a function in pathogen and abiotic stress responses. Tomato SlAIM1 RNA interference (RNAi) plants with reduced SlAIM1 gene expression show an increased susceptibility to the necrotrophic fungus Botrytis cinerea, and increased sensitivity to salt and oxidative stress. Ectopic expression of SlAIM1 is sufficient for tolerance to high salinity and oxidative stress. These responses correlate with reduced sensitivity to abscisic acid (ABA) in the SlAIM1 RNAi, but increased sensitivity in the overexpression plants, suggesting SlAIM1-mediated ABA responses are required to integrate tomato responses to biotic and abiotic stresses. Interestingly, when exposed to high root-zone salinity levels, SlAIM1 RNAi plants accumulate more Na(+), whereas the overexpression lines accumulate less Na(+) relative to wild-type plants, suggesting that SlAIM1 regulates ion fluxes. Transmembrane ion flux is a hallmark of early responses to abiotic stress and pathogen infection preceding hypersensitive cell death and necrosis. Misregulation of ion fluxes can result in impaired plant tolerance to necrotrophic infection or abiotic stress. Our data reveal a previously uncharacterized connection between ABA, Na(+) homeostasis, oxidative stress and pathogen response, and shed light on the genetic control of crosstalk between plant responses to pathogens and abiotic stress. Together, our data suggest SlAIM1 integrates plant responses to pathogens and abiotic stresses by modulating responses to ABA.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Factores de Transcripción/metabolismo , Botrytis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Estrés Oxidativo/genética , Filogenia , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Interferencia de ARN , ARN de Planta/metabolismo , Plantas Tolerantes a la Sal/genética , Sodio/metabolismo , Factores de Transcripción/genética
12.
J Exp Bot ; 61(13): 3787-98, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20595237

RESUMEN

Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research.


Asunto(s)
Arabidopsis/fisiología , Brassicaceae/efectos de los fármacos , Brassicaceae/fisiología , Tolerancia a la Sal/fisiología , Arabidopsis/anatomía & histología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Brassicaceae/anatomía & histología , Brassicaceae/crecimiento & desarrollo , Germinación/efectos de los fármacos , Dosificación Letal Mediana , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Potasio , Sodio , Cloruro de Sodio/farmacología , Cloruro de Sodio/toxicidad
13.
G3 (Bethesda) ; 10(2): 797-810, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31822516

RESUMEN

We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989 The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.


Asunto(s)
Variación Genética , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Carácter Cuantitativo Heredable , Reproducción/genética , Zea mays/genética , Alelos , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Ligamiento Genético , Fenotipo , Fotosíntesis , Zea mays/metabolismo
14.
Front Plant Sci ; 10: 1526, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824542

RESUMEN

Quercus spp. (oaks) are generally intermediate in shade tolerance, yet there is large variation within the genus in shade tolerance and plasticity in response to varying resource availability. Ecophysiological knowledge specific to semi-evergreen Quercus spp. from subtropical maritime forests is lacking relative to temperate deciduous oaks. We studied the influence of light availability and plant competition on leaf physiology and performance of semi-evergreen Quercus virginiana on a barrier island along the US southern Atlantic coast. Seedlings were underplanted in pine (Pinus taeda) plantation stands with varying overstory density (clear-cut, heavy thin, light thin, and non-thinned; creating a gradient of understory light availability) and vegetation (no competition removal or herbaceous competition removal) treatments. After 2 years, seedling survival was higher with increasing light availability (clear-cut = heavy thin > light thin > non-thinned). Seedling growth (i.e., diameter, height, and crown width) increased similarly with increasing thinning intensity, while vegetation control was mainly beneficial to seedling growth in clear-cuts. These responses were partially explained by foliar nitrogen and leaf trait measurements, which followed the same pattern. Q. virginiana seedlings demonstrated high plasticity in their ability to acclimate to varying resource availability, as indicated by light response curves, specific leaf area, stomatal density, stomatal pore index, and maximum theoretical stomatal conductance. Light compensation and saturation points illustrated seedling capacity to increase net CO2 assimilation with increased light availability. Leaves on trees in the high light environment had the highest net CO2 assimilation, stomatal density, stomatal pore index, maximum theoretical stomatal conductance, and lowest specific leaf area. Although we demonstrated the relative shade tolerance of Q. virginiana in lower light environments (i.e., heavy and light thin plots), this semi-evergreen species shows high plasticity in capacity to respond to varying resource availability, similar to other Quercus spp. from mesic and Mediterranean environments.

15.
Mol Plant ; 12(10): 1366-1382, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31152912

RESUMEN

The semi-determinate stem growth habit in leguminous crops, similar to the "green revolution" semi-dwarf trait in cereals, is a key plant architecture trait that affects several other traits determining grain yield. In soybean semi-determinacy is modulated by a post-domestication gain-of-function mutation in the gene, Dt2, which encodes an MADS-box transcription factor. However, its role in systemic modification of stem growth and other traits is unknown. In this study, we show that Dt2 functions not only as a direct repressor of Dt1, which prevents terminal flowering, but also as a direct activator of putative floral integrator/identity genes including GmSOC1, GmAP1, and GmFUL, which likely promote flowering. We also demonstrate that Dt2 functions as a direct repressor of the putative drought-responsive transcription factor gene GmDREB1D, and as a direct activator of GmSPCH and GmGRP7, which are potentially associated with asymmetric division of young epidermal cells and stomatal opening, respectively, and may affect the plant's water-use efficiency (WUE). Intriguingly, Dt2 was found to be a direct activator or repressor of the precursors of eight microRNAs targeting genes potentially associated with meristem maintenance, flowering time, stomatal density, WUE, and/or stress responses. This study thus reveals the molecular basis of pleiotropy associated with plant productivity, adaptability, and environmental resilience.


Asunto(s)
Domesticación , Glycine max/crecimiento & desarrollo , Glycine max/genética , Mutación , Proteínas de Plantas/genética , Factores de Transcripción/genética , Flores/crecimiento & desarrollo , Pleiotropía Genética , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/genética , Glycine max/citología
16.
Sci Rep ; 9(1): 12282, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31439865

RESUMEN

Calcium (Ca2+) signals are decoded by the Ca2+-sensor protein calmodulin (CaM) and are transduced to Ca2+/CaM-binding transcription factors to directly regulate gene expression necessary for acclimation responses in plants. The molecular mechanisms of Ca2+/CaM signal transduction processes and their functional significance remains enigmatic. Here we report a novel Ca2+/CaM signal transduction mechanism that allosterically regulates DNA-binding activity of GT2-LIKE 1 (GTL1), a transrepressor of STOMATAL DENSITY AND DISTRIBUTION 1 (SDD1), to repress stomatal development in response to water stress. We demonstrated that Ca2+/CaM interaction with the 2nd helix of the GTL1 N-terminal trihelix DNA-binding domain (GTL1N) destabilizes a hydrophobic core of GTL1N and allosterically inhibits 3rd helix docking to the SDD1 promoter, leading to osmotic stress-induced Ca2+/CaM-dependent activation (de-repression) of SDD1 expression. This resulted in GTL1-dependent repression of stomatal development in response to water-deficit stress. Together, our results demonstrate that a Ca2+/CaM-regulated transcriptional switch on a trihelix transrepressor directly transduces osmotic stress to repress stomatal development to improve plant water-use efficiency as an acclimation response.


Asunto(s)
Arabidopsis/metabolismo , Señalización del Calcio , Calcio/metabolismo , Calmodulina/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Transcripción Genética , Agua/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Calmodulina/genética , Estomas de Plantas/genética , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética
17.
Plant Direct ; 2(2): e00032, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31245703

RESUMEN

Eutrema salsugineum is a model species for the study of plant adaptation to abiotic stresses. Two accessions of E. salsugineum, Shandong (SH) and Yukon (YK), exhibit contrasting morphology and biotic and abiotic stress tolerance. Transcriptome profiling and metabolic profiling from tissue samples collected during the dark period were used to investigate the molecular and metabolic bases of these contrasting phenotypes. RNA sequencing identified 17,888 expressed genes, of which 157 were not in the published reference genome, and 65 of which were detected for the first time. Differential expression was detected for only 31 genes. The RNA sequencing data contained 14,808 single nucleotide polymorphisms (SNPs) in transcripts, 3,925 of which are newly identified. Among the differentially expressed genes, there were no obvious candidates for the physiological or morphological differences between SH and YK. Metabolic profiling indicated that YK accumulates free fatty acids and long-chain fatty acid derivatives as compared to SH, whereas sugars are more abundant in SH. Metabolite levels suggest that carbohydrate and respiratory metabolism, including starch degradation, is more active during the first half of the dark period in SH. These metabolic differences may explain the greater biomass accumulation in YK over SH. The accumulation of 56% of the identified metabolites was lower in F1 hybrids than the mid-parent averages and the accumulation of 17% of the metabolites in F1 plants transgressed the level in both parents. Concentrations of several metabolites in F1 hybrids agree with previous studies and suggest a role for primary metabolism in heterosis. The improved annotation of the E. salsugineum genome and newly identified high-quality SNPs will permit accelerated studies using the standing variation in this species to elucidate the mechanisms of its diverse adaptations to the environment.

18.
J Plant Physiol ; 193: 110-8, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26967004

RESUMEN

The identification of genetic determinants for water-use efficiency (WUE) and their incorporation into crop plants is critical as world water resources are predicted to become less stable over the coming decades. However, quantification of WUE in small model species such as Arabidopsis is difficult because of low plant water loss relative to root zone evaporation. Furthermore, measurements of long-term WUE are labor-intensive and time-consuming. A novel high-throughput closed-container growing system for measuring plant WUE is described. The system eliminates nearly all water loss from the media and does not require irrigation throughout the duration of a typical experiment. Using the model species Arabidopsis thaliana and Eutrema salsugineum, it was confirmed that under growth chamber conditions, this system: (1) eliminates the need for irrigation for as much as 30 days with media water content remaining above 80% full capacity; (2) allows for quantification of WUE in plants with a leaf area as small as ca. 20 cm(2); (3) does not inhibit plant growth; and (4) does not alter media conditions outside of an acceptable range for these species. The growing system provides an efficient high-throughput system for quantifying plant water loss and WUE.


Asunto(s)
Arabidopsis/fisiología , Brassicaceae/fisiología , Regulación de la Expresión Génica de las Plantas , Transpiración de Plantas , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Brassicaceae/genética , Brassicaceae/efectos de la radiación , Luz , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación
19.
Curr Biol ; 26(5): 707-12, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26898465

RESUMEN

Stomata regulate the uptake of CO2 and the loss of water vapor [1] and contribute to the control of water-use efficiency [2] in plants. Although the guard-cell-signaling pathway coupling blue light perception to ion channel activity is relatively well understood [3], we know less about the sources of ATP required to drive K(+) uptake [3-6]. Here, we show that triacylglycerols (TAGs), present in Arabidopsis guard cells as lipid droplets (LDs), are involved in light-induced stomatal opening. Illumination induces reductions in LD abundance, and this involves the PHOT1 and PHOT2 blue light receptors [3]. Light also induces decreases in specific TAG molecular species. We hypothesized that TAG-derived fatty acids are metabolized by peroxisomal ß-oxidation to produce ATP required for stomatal opening. In silico analysis revealed that guard cells express all the genes required for ß-oxidation, and we showed that light-induced stomatal opening is delayed in three TAG catabolism mutants (sdp1, pxa1, and cgi-58) and in stomata treated with a TAG breakdown inhibitor. We reasoned that, if ATP supply was delaying light-induced stomatal opening, then the activity of the plasma membrane H(+)-ATPase should be reduced at this time. Monitoring changes in apoplastic pH in the mutants showed that this was the case. Together, our results reveal a new role for TAGs in vegetative tissue and show that PHOT1 and PHOT2 are involved in reductions in LD abundance. Reductions in LD abundance in guard cells of the lycophyte Selaginella suggest that TAG breakdown may represent an evolutionarily conserved mechanism in light-induced stomatal opening.


Asunto(s)
Arabidopsis/fisiología , Luz , Triglicéridos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estomas de Plantas/fisiología
20.
Hortic Res ; 1: 14033, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26504542

RESUMEN

Two primarily eastern US native shrubs, Spiraea alba Du Roi and Spiraea tomentosa L., are typically found growing in wet areas, often with standing water. Both species have potential for use in the landscape, but little is known of their environmental requirements, including their adaptation to water stress. Two geographic accessions of each species were evaluated for their response to water stress under greenhouse conditions. Above-ground biomass, water relations and gas exchange were measured in well-watered and water stress treatments. In both species, water stress resulted in reduced growth, transpiration and pre-dawn water potential. However, both species also exhibited the ability to osmotically adjust to lower soil water content, resulting in maintained midday leaf turgor potential in all accessions. Net CO2 assimilation was reduced only in one accession of S. alba, primarily due to large reductions in stomatal conductance. S. tomentosa lost a larger proportion of leaves than S. alba in response to water stress. The primary water stress tolerance strategies of S. alba and S. tomentosa appear to be the maintenance of water uptake and reduced water loss.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA