RESUMEN
INTRODUCTION: Lipopolysaccharide (LPS) is the outer membrane component of Gram-negative bacteria. LPS-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS and has been used as a blood marker for LPS. LBP has recently been indicated to be associated with Parkinson's disease (PD) in small-scale retrospective case-control studies. We aimed to investigate the association between LBP blood levels with PD risk in a nested case-control study within a large European prospective cohort. METHODS: A total of 352 incident PD cases (55% males) were identified and one control per case was selected, matched by age at recruitment, sex and study center. LBP levels in plasma collected at recruitment, which was on average 7.8 years before diagnosis of the cases, were analyzed by enzyme linked immunosorbent assay. Odds ratios (ORs) were estimated for one unit increase of the natural log of LBP levels and PD incidence by conditional logistic regression. RESULTS: Plasma LBP levels were higher in prospective PD cases compared to controls (median (interquartile range) 26.9 (18.1-41.0) vs. 24.7 (16.6-38.4) µg/ml). The OR for PD incidence per one unit increase of log LBP was elevated (1.46, 95% CI 0.98-2.19). This association was more pronounced among women (OR 2.68, 95% CI 1.40-5.13) and overweight/obese subjects (OR 1.54, 95% CI 1.09-2.18). CONCLUSION: The findings suggest that higher plasma LBP levels may be associated with an increased risk of PD and may thus pinpoint to a potential role of endotoxemia in the pathogenesis of PD, particularly in women and overweight/obese individuals.
Asunto(s)
Lipopolisacáridos , Enfermedad de Parkinson , Masculino , Humanos , Femenino , Estudios de Casos y Controles , Sobrepeso , Enfermedad de Parkinson/epidemiología , Estudios Prospectivos , Estudios Retrospectivos , Proteínas de Fase AgudaRESUMEN
BACKGROUND: Metals have been postulated as environmental concerns in the etiology of Parkinson's disease (PD), but metal levels are typically measured after diagnosis, which might be subject to reverse causality. OBJECTIVE: The aim of this study was to investigate the association between prediagnostic blood metal levels and PD risk. METHODS: A case-control study was nested in a prospective European cohort, using erythrocyte samples collected before PD diagnosis. RESULTS: Most assessed metals were not associated with PD risk. Cadmium has a suggestive negative association with PD (odds ratio [95% confidence interval] for the highest quartile, 0.70 [0.42-1.17]), which diminished among never smokers. Among current smokers only, lead was associated with decreased PD risk (0.06 [0.01-0.35]), whereas arsenic showed associations toward an increased PD risk (1.85 [0.45-7.93]). CONCLUSIONS: We observe no strong evidence to support a role of metals in the development of PD. In particular, smoking may confound the association with tobacco-derived metals. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/etiología , Estudios Prospectivos , Estudios de Casos y Controles , CausalidadRESUMEN
A diagnosis of diabetes mellitus and prediabetes has been associated with increased risk of Parkinson's disease (PD) in several studies, but results have not been entirely consistent. We conducted a systematic review and meta-analysis of cohort studies on diabetes mellitus, prediabetes and the risk of PD to provide an up-to-date assessment of the evidence. PubMed and Embase databases were searched for relevant studies up to 6th of February 2022. Cohort studies reporting adjusted relative risk (RR) estimates and 95% confidence intervals (CIs) for the association between diabetes, prediabetes and Parkinson's disease were included. Summary RRs (95% CIs) were calculated using a random effects model. Fifteen cohort studies (29.9 million participants, 86,345 cases) were included in the meta-analysis. The summary RR (95% CI) of PD for persons with diabetes compared to persons without diabetes was 1.27 (1.20-1.35, I2 = 82%). There was no indication of publication bias, based on Egger's test (p = 0.41), Begg's test (p = 0.99), and inspection of the funnel plot. The association was consistent across geographic regions, by sex, and across several other subgroup and sensitivity analyses. There was some suggestion of a stronger association for diabetes patients reporting diabetes complications than for diabetes patients without complications (RR = 1.54, 1.32-1.80 [n = 3] vs. 1.26, 1.16-1.38 [n = 3]), vs. those without diabetes (pheterogeneity=0.18). The summary RR for prediabetes was 1.04 (95% CI: 1.02-1.07, I2 = 0%, n = 2). Our results suggest that patients with diabetes have a 27% increased relative risk of developing PD compared to persons without diabetes, and persons with prediabetes have a 4% increase in RR compared to persons with normal blood glucose. Further studies are warranted to clarify the specific role age of onset or duration of diabetes, diabetic complications, glycaemic level and its long-term variability and management may play in relation to PD risk.
Asunto(s)
Diabetes Mellitus , Enfermedad de Parkinson , Estado Prediabético , Humanos , Estado Prediabético/epidemiología , Factores de Riesgo , Enfermedad de Parkinson/epidemiología , Estudios de CohortesRESUMEN
To assess 20-year retrospective trajectories of cardio-metabolic factors preceding dementia diagnosis among people with type 2 diabetes (T2D). We identified 227,145 people with T2D aged > 42 years between 1999 and 2018. Annual mean levels of eight routinely measured cardio-metabolic factors were extracted from the Clinical Practice Research Datalink. Multivariable multilevel piecewise and non-piecewise growth curve models assessed retrospective trajectories of cardio-metabolic factors by dementia status from up to 19 years preceding dementia diagnosis (dementia) or last contact with healthcare (no dementia). 23,546 patients developed dementia; mean (SD) follow-up was 10.0 (5.8) years. In the dementia group, mean systolic blood pressure increased 16-19 years before dementia diagnosis compared with patients without dementia, but declined more steeply from 16 years before diagnosis, while diastolic blood pressure generally declined at similar rates. Mean body mass index followed a steeper non-linear decline from 11 years before diagnosis in the dementia group. Mean blood lipid levels (total cholesterol, LDL, HDL) and glycaemic measures (fasting plasma glucose and HbA1c) were generally higher in the dementia group compared with those without dementia and followed similar patterns of change. However, absolute group differences were small. Differences in levels of cardio-metabolic factors were observed up to two decades prior to dementia diagnosis. Our findings suggest that a long follow-up is crucial to minimise reverse causation arising from changes in cardio-metabolic factors during preclinical dementia. Future investigations which address associations between cardiometabolic factors and dementia should account for potential non-linear relationships and consider the timeframe when measurements are taken.
Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Estudios Retrospectivos , Índice de Masa Corporal , Presión Sanguínea/fisiología , Inglaterra/epidemiología , Glucemia , Factores de Riesgo , HDL-ColesterolRESUMEN
INTRODUCTION: Metformin has been suggested as a therapeutic agent for dementia, but the relevant evidence has been partial and inconsistent. METHODS: We established a national cohort of 210,237 type 2 diabetes patients in the UK Clinical Practice Research Datalink. Risks of incident dementia were compared between metformin initiators and those who were not prescribed any anti-diabetes medication during follow-up. RESULTS: Compared with metformin initiators (n = 114,628), patients who received no anti-diabetes medication (n = 95,609) had lower HbA1c and better cardiovascular health at baseline. Both Cox regression and propensity score weighting analysis showed metformin initiators had lower risk of dementia compared to those non-users (adjusted hazard ratio = 0.88 [95% confidence interval: 0.84-0.92] and 0.90 [0.84-0.96]). Patients on long-term metformin treatment had an even lower risk of dementia. DISCUSSION: Metformin may act beyond its glycemic effect and reduce dementia risk to an even lower level than that of patients with milder diabetes and better health profiles. HIGHLIGHTS: Metformin initiators had a significantly lower risk of dementia compared with patients not receiving anti-diabetes medication. Compared with metformin initiators, diabetes patients not receiving pharmacological treatment had better glycemic profiles at baseline and during follow-up. Patients on long-term metformin treatment had an even lower risk of subsequent dementia incidence. Metformin may act beyond its effect on hyperglycemia and has the potential of being repurposed for dementia prevention.
Asunto(s)
Demencia , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Hipoglucemiantes/uso terapéutico , Incidencia , Demencia/tratamiento farmacológico , Demencia/epidemiología , Demencia/inducido químicamente , Estudios RetrospectivosRESUMEN
OBJECTIVE: Metals have been suggested as a risk factor for amyotrophic lateral sclerosis (ALS), but only retrospective studies are available to date. We compared metal levels in prospectively collected blood samples from ALS patients and controls, to explore whether metals are associated with ALS mortality. METHODS: A nested ALS case-control study was conducted within the prospective EPIC (European Prospective Investigation into Cancer and Nutrition) cohort. Cases were identified through death certificates. We analyzed metal levels in erythrocyte samples obtained at recruitment, as a biomarker for metal exposure from any source. Arsenic, cadmium, copper, lead, manganese, mercury, selenium, and zinc concentrations were measured by inductively coupled plasma-mass spectrometry. To estimate ALS risk, we applied conditional logistic regression models. RESULTS: The study population comprised 107 cases (65% female) and 319 controls matched for age, sex, and study center. Median time between blood collection and ALS death was 8 years (range = 1-15). Comparing the highest with the lowest tertile, cadmium (odds ratio [OR] = 2.04, 95% confidence interval [CI] = 1.08-3.87) and lead (OR = 1.89, 95% CI = 0.97-3.67) concentrations suggest associations with increased ALS risk. Zinc was associated with a decreased risk (OR = 0.50, 95% CI = 0.27-0.94). Associations for cadmium and lead remained when limiting analyses to noncurrent smokers. INTERPRETATION: This is the first study to compare metal levels before disease onset, minimizing reverse causation. The observed associations suggest that cadmium, lead, and zinc may play a role in ALS etiology. Cadmium and lead possibly act as intermediates on the pathway from smoking to ALS. ANN NEUROL 20209999:n/a-n/a.
Asunto(s)
Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/etiología , Exposición a Riesgos Ambientales , Mercurio/sangre , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , RiesgoRESUMEN
BACKGROUND: Distal hereditary motor neuronopathies (dHMN) are a group of genetic disorders characterised by motor neuron degeneration leading to muscle weakness that are caused by mutations in various genes. HMNJ is a distinct form of the disease that has been identified in patients from the Jerash region of Jordan. Our aim was to identify and characterise the genetic cause of HMNJ. METHODS: We used whole exome and Sanger sequencing to identify a novel genetic variant associated with the disease and then carried out immunoblot, immunofluorescence and apoptosis assays to extract functional data and clarify the effect of this novel SIGMAR1 mutation. Physical and neurological examinations were performed on selected patients and unaffected individuals in order to re-evaluate clinical status of patients 20 years after the initial description of HMNJ as well as to evaluate new and previously undescribed patients with HMNJ. RESULTS: A homozygous missense mutation (c.500A>T, N167I) in exon 4 of the SIGMAR1 gene was identified, cosegregating with HMNJ in the 27 patients from 7 previously described consanguineous families and 3 newly ascertained patients. The mutant SIGMAR1 exhibits reduced expression, altered subcellular distribution and elevates cell death when expressed. CONCLUSION: In conclusion, the homozygous SIGMAR1 c.500A>T mutation causes dHMN of the Jerash type, possibly due to a significant drop of protein levels. This finding is in agreement with other SIGMAR1 mutations that have been associated with autosomal recessive dHMN with pyramidal signs; thus, our findings further support that SIGMAR1 be added to the dHMN genes diagnostic panel.
Asunto(s)
Predisposición Genética a la Enfermedad , Atrofia Muscular Espinal/genética , Receptores sigma/genética , Adolescente , Adulto , Niño , Exoma/genética , Femenino , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Atrofia Muscular Espinal/fisiopatología , Mutación Missense/genética , Linaje , Fenotipo , Adulto Joven , Receptor Sigma-1RESUMEN
OBJECTIVE: MicroRNA (miRNA)-mediated (dys)regulation of gene expression has been implicated in Parkinson's disease (PD), although results of miRNA expression studies remain inconclusive. We aimed to identify miRNAs that show consistent differential expression across all published expression studies in PD. METHODS: We performed a systematic literature search on miRNA expression studies in PD and extracted data from eligible publications. After stratification for brain, blood, and cerebrospinal fluid (CSF)-derived specimen, we performed meta-analyses across miRNAs assessed in three or more independent data sets. Meta-analyses were performed using effect-size- and p-value-based methods, as applicable. RESULTS: After screening 599 publications, we identified 47 data sets eligible for meta-analysis. On these, we performed 160 meta-analyses on miRNAs quantified in brain (n = 125), blood (n = 31), or CSF (n = 4). Twenty-one meta-analyses were performed using effect sizes. We identified 13 significantly (Bonferroni-adjusted α = 3.13 × 10-4 ) differentially expressed miRNAs in brain (n = 3) and blood (n = 10) with consistent effect directions across studies. The most compelling findings were with hsa-miR-132-3p (p = 6.37 × 10-5 ), hsa-miR-497-5p (p = 1.35 × 10-4 ), and hsa-miR-133b (p = 1.90 × 10-4 ) in brain and with hsa-miR-221-3p (p = 4.49 × 10-35 ), hsa-miR-214-3p (p = 2.00 × 10-34 ), and hsa-miR-29c-3p (p = 3.00 × 10-12 ) in blood. No significant signals were found in CSF. Analyses of genome-wide association study data for target genes of brain miRNAs showed significant association (α = 9.40 × 10-5 ) of genetic variants in nine loci. INTERPRETATION: We identified several miRNAs that showed highly significant differential expression in PD. Future studies may assess the possible role of the identified brain miRNAs in pathogenesis and disease progression as well as the potential of the top blood miRNAs as biomarkers for diagnosis, progression, or prediction of PD. ANN NEUROL 2019;85:835-851.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , MicroARNs/genética , Enfermedad de Parkinson/genética , Humanos , MicroARNs/biosíntesis , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/epidemiologíaRESUMEN
BACKGROUND: Dysfunction of mitochondrial energy generation may contribute to neurodegeneration, leading to synaptic loss in Parkinson's disease (PD). The objective of this study was to find cross-sectional and longitudinal changes in PET markers of synaptic vesicle protein 2A, sigma 1 receptor, and mitochondrial complex 1 in drug-naive PD patients. METHODS: Twelve early drug-naive PD patients and 16 healthy controls underwent a 3-Tesla MRI and PET imaging to quantify volume of distribution of [11 C]UCB-J, [11 C]SA-4503, and [18 F]BCPP-EF for synaptic vesicle protein 2A, sigma 1 receptor, and mitochondrial complex 1, respectively. Nine PD patients completed approximately 1-year follow-up assessments. RESULTS: Reduced [11 C]UCB-J volume of distribution in the caudate, putamen, thalamus, brain stem, and dorsal raphe and across cortical regions was observed in drug-naive PD patients compared with healthy controls. [11 C]UCB-J volume of distribution was reduced in the locus coeruleus and substantia nigra but did not reach statistical significance. No significant differences were found in [11 C]SA-4503 and [18 F]BCPP-EF volume of distribution in PD compared with healthy controls. Lower brain stem [11 C]UCB-J volume of distribution correlated with Movement Disorder Society Unified Parkinson's Disease Rating Scale part III and total scores. No significant longitudinal changes were identified in PD patients at follow-up compared with baseline. CONCLUSIONS: Our findings represent the first in vivo evidence of mitochondrial, endoplasmic reticulum, and synaptic dysfunction in drug-naive PD patients. Synaptic dysfunction likely occurs early in disease pathophysiology and has relevance to symptomatology. Mitochondrial complex 1 and sigma 1 receptor pathology warrants further investigations in PD. Studies in larger cohorts with longer follow-up will determine the validity of these PET markers to track disease progression. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Preparaciones Farmacéuticas , Estudios Transversales , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía de Emisión de Positrones , Vesículas SinápticasRESUMEN
BACKGROUND: Parkinson's disease (PD) etiology is not well understood. Reported inverse associations with smoking and coffee consumption prompted the investigation of alcohol consumption as a risk factor, for which evidence is inconclusive. OBJECTIVE: To assess the associations between alcohol consumption and PD risk. METHODS: Within NeuroEPIC4PD, a prospective European population-based cohort, 694 incident PD cases were ascertained from 209,998 PD-free participants. Average alcohol consumption at different time points was self-reported at recruitment. Cox regression hazard ratios were estimated for alcohol consumption and PD occurrence. RESULTS: No associations between baseline or lifetime total alcohol consumption and PD risk were observed. Men with moderate lifetime consumption (5-29.9 g/day) were at ~50% higher risk compared with light consumption (0.1-4.9 g/day), but no linear exposure-response trend was observed. Analyses by beverage type also revealed no associations with PD. CONCLUSION: Our data reinforce previous findings from prospective studies showing no association between alcohol consumption and PD risk. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/epidemiología , Café , Estudios de Cohortes , Humanos , Masculino , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/etiología , Estudios Prospectivos , Factores de RiesgoRESUMEN
The Dementias Platform UK Data Portal is a data repository facilitating access to data for 3 370 929 individuals in 42 cohorts. The Data Portal is an end-to-end data management solution providing a secure, fully auditable, remote access environment for the analysis of cohort data. All projects utilising the data are by default collaborations with the cohort research teams generating the data. The Data Portal uses UK Secure eResearch Platform infrastructure to provide three core utilities: data discovery, access, and analysis. These are delivered using a 7 layered architecture comprising: data ingestion, data curation, platform interoperability, data discovery, access brokerage, data analysis and knowledge preservation. Automated, streamlined, and standardised procedures reduce the administrative burden for all stakeholders, particularly for requests involving multiple independent datasets, where a single request may be forwarded to multiple data controllers. Researchers are provided with their own secure 'lab' using VMware which is accessed using two factor authentication. Over the last 2 years, 160 project proposals involving 579 individual cohort data access requests were received. These were received from 268 applicants spanning 72 institutions (56 academic, 13 commercial, 3 government) in 16 countries with 84 requests involving multiple cohorts. Projects are varied including multi-modal, machine learning, and Mendelian randomisation analyses. Data access is usually free at point of use although a small number of cohorts require a data access fee.
Asunto(s)
Manejo de Datos , Sistemas de Administración de Bases de Datos , Demencia , Investigación Biomédica , Estudios de Cohortes , Conjuntos de Datos como Asunto , Humanos , Reino UnidoRESUMEN
Reducing the risk of dementia can halt the worldwide increase of affected people. The multifactorial and heterogeneous nature of late-onset dementia, including Alzheimer's disease (AD), indicates a potential impact of multidomain lifestyle interventions on risk reduction. The positive results of the landmark multidomain Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) support such an approach. The World-Wide FINGERS (WW-FINGERS), launched in 2017 and including over 25 countries, is the first global network of multidomain lifestyle intervention trials for dementia risk reduction and prevention. WW-FINGERS aims to adapt, test, and optimize the FINGER model to reduce risk across the spectrum of cognitive decline-from at-risk asymptomatic states to early symptomatic stages-in different geographical, cultural, and economic settings. WW-FINGERS aims to harmonize and adapt multidomain interventions across various countries and settings, to facilitate data sharing and analysis across studies, and to promote international joint initiatives to identify globally implementable and effective preventive strategies.
Asunto(s)
Enfermedad de Alzheimer/prevención & control , Demencia/prevención & control , Terapia por Ejercicio , Estilo de Vida , Ensayos Clínicos como Asunto , Cognición/fisiología , Humanos , Proyectos de Investigación , Conducta de Reducción del RiesgoRESUMEN
Previously, we reported that intracranial inoculation of brain homogenate from multiple system atrophy (MSA) patient samples produces neurological disease in the transgenic (Tg) mouse model TgM83+/-, which uses the prion protein promoter to express human α-synuclein harboring the A53T mutation found in familial Parkinson's disease (PD). In our studies, we inoculated MSA and control patient samples into Tg mice constructed using a P1 artificial chromosome to express wild-type (WT), A30P, and A53T human α-synuclein on a mouse α-synuclein knockout background [Tg(SNCA+/+)Nbm, Tg(SNCA*A30P+/+)Nbm, and Tg(SNCA*A53T+/+)Nbm]. In contrast to studies using TgM83+/- mice, motor deficits were not observed by 330-400 days in any of the Tg(SNCA)Nbm mice after inoculation with MSA brain homogenates. However, using a cell-based bioassay to measure α-synuclein prions, we found brain homogenates from Tg(SNCA*A53T+/+)Nbm mice inoculated with MSA patient samples contained α-synuclein prions, whereas control mice did not. Moreover, these α-synuclein aggregates retained the biological and biochemical characteristics of the α-synuclein prions in MSA patient samples. Intriguingly, Tg(SNCA*A53T+/+)Nbm mice developed α-synuclein pathology in neurons and astrocytes throughout the limbic system. This finding is in contrast to MSA-inoculated TgM83+/- mice, which develop exclusively neuronal α-synuclein aggregates in the hindbrain that cause motor deficits with advanced disease. In a crossover experiment, we inoculated TgM83+/- mice with brain homogenate from two MSA patient samples or one control sample first inoculated, or passaged, in Tg(SNCA*A53T+/+)Nbm animals. Additionally, we performed the reverse experiment by inoculating Tg(SNCA*A53T+/+)Nbm mice with brain homogenate from the same two MSA samples and one control sample first passaged in TgM83+/- animals. The TgM83+/- mice inoculated with mouse-passaged MSA developed motor dysfunction and α-synuclein prions, whereas the mouse-passaged control sample had no effect. Similarly, the mouse-passaged MSA samples induced α-synuclein prion formation in Tg(SNCA*A53T+/+)Nbm mice, but the mouse-passaged control sample did not. The confirmed transmission of α-synuclein prions to a second synucleinopathy model and the ability to propagate prions between two distinct mouse lines while retaining strain-specific properties provides compelling evidence that MSA is a prion disease.
Asunto(s)
Atrofia de Múltiples Sistemas/patología , Enfermedades por Prión/patología , Enfermedades por Prión/transmisión , Priones/metabolismo , alfa-Sinucleína/metabolismo , Animales , Humanos , Ratones , Ratones TransgénicosRESUMEN
INTRODUCTION: Several microRNAs (miRNAs) have been implicated in Alzheimer's disease pathogenesis, but the evidence from individual case-control studies remains inconclusive. METHODS: A systematic literature review was performed, followed by standardized multistage data extraction, quality control, and meta-analyses on eligible data for brain, blood, and cerebrospinal fluid specimens. Results were compared with miRNAs reported in the abstracts of eligible studies or recent qualitative reviews to assess novelty. RESULTS: Data from 147 independent data sets across 107 publications were quantitatively assessed in 461 meta-analyses. Twenty-five, five, and 32 miRNAs showed studywide significant differential expression (α < 1·08 × 10-4) in brain, cerebrospinal fluid, and blood-derived specimens, respectively, with 5 miRNAs showing differential expression in both brain and blood. Of these 57 miRNAs, 13 had not been reported in the abstracts of previous original or review articles. DISCUSSION: Our systematic assessment of differential miRNA expression is the first of its kind in Alzheimer's disease and highlights several miRNAs of potential relevance.
Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Biomarcadores/líquido cefalorraquídeo , MicroARNs/genética , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Encéfalo/patología , Estudios de Casos y Controles , Epigenómica , HumanosRESUMEN
The 2018 National Institute on Aging and the Alzheimer's Association (NIA-AA) research framework recently redefined Alzheimer's disease (AD) as a biological construct, based on in vivo biomarkers reflecting key neuropathologic features. Combinations of normal/abnormal levels of three biomarker categories, based on single thresholds, form the AD signature profile that defines the biological disease state as a continuum, independent of clinical symptomatology. While single thresholds may be useful in defining the biological signature profile, we provide evidence that their use in studies with cognitive outcomes merits further consideration. Using data from the Alzheimer's Disease Neuroimaging Initiative with a focus on cortical amyloid binding, we discuss the limitations of applying the biological definition of disease status as a tool to define the increased likelihood of the onset of the Alzheimer's clinical syndrome and the effects that this may have on trial study design. We also suggest potential research objectives going forward and what the related data requirements would be.
Asunto(s)
Enfermedad de Alzheimer/clasificación , Biomarcadores , Encéfalo , Neuropatología , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , National Institute on Aging (U.S.)/normas , Neuroimagen , Estados UnidosRESUMEN
In multiple system atrophy (MSA), progressive neurodegeneration results from the protein α-synuclein misfolding into a self-templating prion conformation that spreads throughout the brain. MSA prions are transmissible to transgenic (Tg) mice expressing mutated human α-synuclein (TgM83+/-), inducing neurological disease following intracranial inoculation with brain homogenate from deceased patient samples. Noting the similarities between α-synuclein prions and PrP scrapie (PrPSc) prions responsible for Creutzfeldt-Jakob disease (CJD), we investigated MSA transmission under conditions known to result in PrPSc transmission. When peripherally exposed to MSA via the peritoneal cavity, hind leg muscle, and tongue, TgM83+/- mice developed neurological signs accompanied by α-synuclein prions in the brain. Iatrogenic CJD, resulting from PrPSc prion adherence to surgical steel instruments, has been investigated by incubating steel sutures in contaminated brain homogenate before implantation into mouse brain. Mice studied using this model for MSA developed disease, whereas wire incubated in control homogenate had no effect on the animals. Notably, formalin fixation did not inactivate α-synuclein prions. Formalin-fixed MSA patient samples also transmitted disease to TgM83+/- mice, even after incubating in fixative for 244 months. Finally, at least 10% sarkosyl was found to be the concentration necessary to partially inactivate MSA prions. These results demonstrate the robustness of α-synuclein prions to denaturation. Moreover, they establish the parallel characteristics between PrPSc and α-synuclein prions, arguing that clinicians should exercise caution when working with materials that might contain α-synuclein prions to prevent disease.
Asunto(s)
Atrofia de Múltiples Sistemas/metabolismo , Priones/metabolismo , Animales , Transporte Biológico , Encéfalo/metabolismo , Encéfalo/patología , Detergentes/farmacología , Modelos Animales de Enfermedad , Fijadores , Formaldehído , Células HEK293 , Humanos , Ratones Transgénicos , Atrofia de Múltiples Sistemas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación , Priones/administración & dosificación , Agregado de Proteínas , Estabilidad Proteica/efectos de los fármacos , Sarcosina/análogos & derivados , Sarcosina/farmacología , Acero Inoxidable , alfa-Sinucleína/administración & dosificación , alfa-Sinucleína/efectos adversos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMEN
Prions are proteins that adopt alternative conformations that become self-propagating; the PrP(Sc) prion causes the rare human disorder Creutzfeldt-Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein. To determine whether human α-synuclein forms prions, we examined 14 human brain homogenates for transmission to cultured human embryonic kidney (HEK) cells expressing full-length, mutant human α-synuclein fused to yellow fluorescent protein (α-syn140*A53T-YFP) and TgM83(+/-) mice expressing α-synuclein (A53T). The TgM83(+/-) mice that were hemizygous for the mutant transgene did not develop spontaneous illness; in contrast, the TgM83(+/+) mice that were homozygous developed neurological dysfunction. Brain extracts from 14 MSA cases all transmitted neurodegeneration to TgM83(+/-) mice after incubation periods of â¼120 d, which was accompanied by deposition of α-synuclein within neuronal cell bodies and axons. All of the MSA extracts also induced aggregation of α-syn*A53T-YFP in cultured cells, whereas none of six Parkinson's disease (PD) extracts or a control sample did so. Our findings argue that MSA is caused by a unique strain of α-synuclein prions, which is different from the putative prions causing PD and from those causing spontaneous neurodegeneration in TgM83(+/+) mice. Remarkably, α-synuclein is the first new human prion to be identified, to our knowledge, since the discovery a half century ago that CJD was transmissible.
Asunto(s)
Atrofia de Múltiples Sistemas/metabolismo , Trastornos Parkinsonianos/metabolismo , Priones/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Animales , Encéfalo/patología , Exones , Femenino , Células HEK293 , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/genética , Enfermedades Neurodegenerativas/metabolismo , Fosforilación , Polimorfismo de Nucleótido Simple , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , alfa-Sinucleína/genéticaRESUMEN
Increasingly, evidence argues that many neurodegenerative diseases, including progressive supranuclear palsy (PSP), are caused by prions, which are alternatively folded proteins undergoing self-propagation. In earlier studies, PSP prions were detected by infecting human embryonic kidney (HEK) cells expressing a tau fragment [TauRD(LM)] fused to yellow fluorescent protein (YFP). Here, we report on an improved bioassay using selective precipitation of tau prions from human PSP brain homogenates before infection of the HEK cells. Tau prions were measured by counting the number of cells with TauRD(LM)-YFP aggregates using confocal fluorescence microscopy. In parallel studies, we fused α-synuclein to YFP to bioassay α-synuclein prions in the brains of patients who died of multiple system atrophy (MSA). Previously, MSA prion detection required â¼120 d for transmission into transgenic mice, whereas our cultured cell assay needed only 4 d. Variation in MSA prion levels in four different brain regions from three patients provided evidence for three different MSA prion strains. Attempts to demonstrate α-synuclein prions in brain homogenates from Parkinson's disease patients were unsuccessful, identifying an important biological difference between the two synucleinopathies. Partial purification of tau and α-synuclein prions facilitated measuring the levels of these protein pathogens in human brains. Our studies should facilitate investigations of the pathogenesis of both tau and α-synuclein prion disorders as well as help decipher the basic biology of those prions that attack the CNS.
Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Priones/metabolismo , alfa-Sinucleína/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Enfermedades Neurodegenerativas/patologíaRESUMEN
BACKGROUND: Vascular dementia is a common disorder resulting in considerable morbidity and mortality. Determining the extent to which genes play a role in disease susceptibility and their pathophysiological mechanisms could improve our understanding of vascular dementia, leading to a potential translation of this knowledge to clinical practice. DISCUSSION: In this review, we discuss what is currently known about the genetics of vascular dementia. The identification of causal genes remains limited to monogenic forms of the disease, with findings for sporadic vascular dementia being less robust. However, progress in genetic research on associated phenotypes, such as cerebral small vessel disease, Alzheimer's disease, and stroke, have the potential to inform on the genetics of vascular dementia. We conclude by providing an overview of future developments in the field and how such work could impact patients and clinicians. CONCLUSION: The genetic background of vascular dementia is well established for monogenic disorders, but remains relatively obscure for the sporadic form. More work is needed for providing robust findings that might eventually lead to clinical translation.
Asunto(s)
Demencia Vascular/diagnóstico por imagen , Demencia Vascular/genética , Apolipoproteínas E/genética , Arildialquilfosfatasa/genética , Demencia/etiología , Progresión de la Enfermedad , Humanos , Imagen por Resonancia Magnética , Polimorfismo GenéticoRESUMEN
OBJECTIVE: The relationship between Parkinson disease (PD), PD with dementia (PDD), and dementia with Lewy bodies (DLB) has long been debated. Although PD is primarily considered a motor disorder, cognitive impairment is often present at diagnosis, and only â¼20% of patients remain cognitively intact in the long term. Alpha-synuclein (SNCA) was first implicated in the pathogenesis of the disease when point mutations and locus multiplications were identified in familial parkinsonism with dementia. In worldwide populations, SNCA genetic variability remains the most reproducible risk factor for idiopathic PD. However, few investigators have looked at SNCA variability in terms of cognitive outcomes. METHODS: We have used targeted high-throughput sequencing to characterize the 135kb SNCA locus in a large multinational cohort of patients with PD, PDD, and DLB and healthy controls. RESULTS: An analysis of 43 tagging single nucleotide polymorphisms across the SNCA locus shows 2 distinct association profiles for symptoms of parkinsonism and/or dementia, respectively, toward the 3' or the 5' of the SNCA gene. In addition, we define a specific haplotype in intron 4 that is directly associated with PDD. The PDD risk haplotype has been interrogated at single nucleotide resolution and is uniquely tagged by an expanded TTTCn repeat. INTERPRETATION: Our data show that PD, PDD, and DLB, rather than a disease continuum, have distinct genetic etiologies albeit within one genomic locus. Such results may serve as prognostic biomarkers to these disorders, to inform physicians and patients, and to assist in the design and stratification of clinical trials aimed at disease modification. Ann Neurol 2016;79:991-999.