Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Circ Res ; 128(3): 401-418, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33322916

RESUMEN

RATIONALE: In pulmonary arterial hypertension (PAH), endothelial dysfunction and obliterative vascular disease are associated with DNA damage and impaired signaling of BMPR2 (bone morphogenetic protein type 2 receptor) via two downstream transcription factors, PPARγ (peroxisome proliferator-activated receptor gamma), and p53. OBJECTIVE: We investigated the vasculoprotective and regenerative potential of a newly identified PPARγ-p53 transcription factor complex in the pulmonary endothelium. METHODS AND RESULTS: In this study, we identified a pharmacologically inducible vasculoprotective mechanism in pulmonary arterial and lung MV (microvascular) endothelial cells in response to DNA damage and oxidant stress regulated in part by a BMPR2 dependent transcription factor complex between PPARγ and p53. Chromatin immunoprecipitation sequencing and RNA-sequencing established an inducible PPARγ-p53 mediated regenerative program regulating 19 genes involved in lung endothelial cell survival, angiogenesis and DNA repair including, EPHA2 (ephrin type-A receptor 2), FHL2 (four and a half LIM domains protein 2), JAG1 (jagged 1), SULF2 (extracellular sulfatase Sulf-2), and TIGAR (TP53-inducible glycolysis and apoptosis regulator). Expression of these genes was partially impaired when the PPARγ-p53 complex was pharmacologically disrupted or when BMPR2 was reduced in pulmonary artery endothelial cells (PAECs) subjected to oxidative stress. In endothelial cell-specific Bmpr2-knockout mice unable to stabilize p53 in endothelial cells under oxidative stress, Nutlin-3 rescued endothelial p53 and PPARγ-p53 complex formation and induced target genes, such as APLN (apelin) and JAG1, to regenerate pulmonary microvessels and reverse pulmonary hypertension. In PAECs from BMPR2 mutant PAH patients, pharmacological induction of p53 and PPARγ-p53 genes repaired damaged DNA utilizing genes from the nucleotide excision repair pathway without provoking PAEC apoptosis. CONCLUSIONS: We identified a novel therapeutic strategy that activates a vasculoprotective gene regulation program in PAECs downstream of dysfunctional BMPR2 to rehabilitate PAH PAECs, regenerate pulmonary microvessels, and reverse disease. Our studies pave the way for p53-based vasculoregenerative therapies for PAH by extending the therapeutic focus to PAEC dysfunction and to DNA damage associated with PAH progression.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Células Endoteliales/efectos de los fármacos , Imidazoles/farmacología , Neovascularización Fisiológica/efectos de los fármacos , PPAR gamma/metabolismo , Piperazinas/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Arteria Pulmonar/efectos de los fármacos , Regeneración/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Estrés Oxidativo , PPAR gamma/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
2.
Purinergic Signal ; 15(3): 299-311, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31396838

RESUMEN

Dysfunction of the pulmonary endothelium is associated with most lung diseases. Extracellular nucleotides modulate a plethora of endothelial functions in the lung such as vessel integrity, vasodilatation, inflammatory, and thrombotic responses as well as survival and DNA repair, mostly via Ca2+ signaling pathways. However, a comprehensive analysis of the molecular components of the underlying P2 receptor-mediated Ca2+ signaling pathways in the lung has not been conducted so far. Therefore, our aim was to identify the principal P2 receptor Ca2+ signalosome in the human pulmonary endothelium and investigate potential dysregulation in pulmonary vascular disease. Comparative transcriptomics and quantitative immunohistochemistry were performed on publicly available RNA sequencing and protein datasets to identify the specific expression profile of the P2-receptor Ca2+ signalosome in the healthy human pulmonary endothelium and endothelial cells (EC) dysfunctional due to loss of or defective bone morphogenetic protein receptor (BMPR2). Functional expression of signalosome components was tested by single cell Ca2+ imaging. Comparative transcriptome analysis of 11 endothelial cell subtypes revealed a specific P2 receptor Ca2+ signalosome signature for the pulmonary endothelium. Pulmonary endothelial expression of the most abundantly expressed Ca2+ toolkit genes CALM1, CALM2, VDAC1, and GNAS was confirmed by immunohistochemistry (IHC). P2RX1, P2RX4, P2RY6, and P2YR11 showed strong lung endothelial staining by IHC, P2X5, and P2Y1 were found to a much lesser extent. Very weak or no signals were detected for all other P2 receptors. Stimulation of human pulmonary artery (HPA) EC by purine nucleotides ATP, ADP, and AMP led to robust intracellular Ca2+ signals mediated through both P2X and P2Y receptors. Pyrimidine UTP and UDP-mediated Ca2+ signals were generated almost exclusively by activation of P2Y receptors. HPAEC made dysfunctional by siRNA-mediated BMPR2 depletion showed downregulation of 18 and upregulation of 19 P2 receptor Ca2+ signalosome genes including PLCD4, which was found to be upregulated in iPSC-EC from BMPR2-mutant patients with pulmonary arterial hypertension. In conclusion, the human pulmonary endothelium expresses a distinct functional subset of the P2 receptor Ca2+ signalosome. Composition of the P2 receptor Ca2+ toolkit in the pulmonary endothelium is susceptible to genetic disturbances likely contributing to an unfavorable pulmonary disease phenotype found in pulmonary arterial hypertension.


Asunto(s)
Señalización del Calcio/fisiología , Endotelio Vascular/metabolismo , Pulmón/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Receptores Purinérgicos P2/metabolismo , Células Cultivadas , Humanos
3.
Learn Mem ; 24(12): 650-659, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29142062

RESUMEN

The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the adult brain. The physiological expression pattern of neuroserpin, its high degree of colocalization with tPA within the CNS, together with its dysregulation in neuropsychiatric disorders, suggest a role in formation and refinement of synapses. In fact, studies in cell culture and mice point to a role for neuroserpin in dendritic branching, spine morphology, and modulation of behavior. In this study, we investigated the physiological role of neuroserpin in the regulation of synaptic density, synaptic plasticity, and behavior in neuroserpin-deficient mice. In the absence of neuroserpin, mice show a significant decrease in spine-synapse density in the CA1 region of the hippocampus, while expression of the key postsynaptic scaffold protein PSD-95 is increased in this region. Neuroserpin-deficient mice show decreased synaptic potentiation, as indicated by reduced long-term potentiation (LTP), whereas presynaptic paired-pulse facilitation (PPF) is unaffected. Consistent with altered synaptic plasticity, neuroserpin-deficient mice exhibit cognitive and sociability deficits in behavioral assays. However, although synaptic dysfunction is implicated in neuropsychiatric disorders, we do not detect alterations in expression of neuroserpin in fusiform gyrus of autism patients or in dorsolateral prefrontal cortex of schizophrenia patients. Our results identify neuroserpin as a modulator of synaptic plasticity, and point to a role for neuroserpin in learning and memory.


Asunto(s)
Regulación de la Expresión Génica/genética , Plasticidad Neuronal/genética , Neuropéptidos/deficiencia , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/deficiencia , Conducta Social , Sinapsis/genética , Adolescente , Adulto , Animales , Trastorno Autístico/genética , Trastorno Autístico/patología , Trastorno Autístico/psicología , Niño , Conducta Exploratoria/fisiología , Hipocampo/fisiología , Hipocampo/ultraestructura , Humanos , Potenciación a Largo Plazo/genética , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neuropéptidos/genética , Serpinas/genética , Sinapsis/fisiología , Sinapsis/ultraestructura , Proteína 25 Asociada a Sinaptosomas/metabolismo , Adulto Joven , Neuroserpina
4.
ERJ Open Res ; 9(2)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36923572

RESUMEN

Background: Converging evidence from proteogenomic analyses prioritises thrombospondin-2 (TSP2) as a potential biomarker for idiopathic or heritable pulmonary arterial hypertension (PAH). We aimed to assess TSP2 levels in different forms of pulmonary hypertension (PH) and to define its clinical phenotype. Methods: Absolute concentrations of TSP2 were quantified in plasma samples from a prospective single-centre cohort study including 196 patients with different forms of PH and 16 disease controls (suspected PH, but normal resting pulmonary haemodynamics). In an unbiased approach, TSP2 levels were related to 152 clinical variables. Results: Concentrations of TSP2 were increased in patients with PH versus disease controls (p<0.001 for group comparison). The discriminatory ability of TSP2 levels to distinguish between patients and controls was superior to that of N-terminal pro-brain natriuretic peptide (p=0.0023 for comparison of areas under the curve). Elevation of TSP2 levels was consistently found in subcategories of PAH, in PH due to lung disease and due to left heart disease. Phenotypically, TSP2 levels were robustly related to echocardiographic markers that indicate the right ventricular (RV) response to chronically increased afterload with increased levels in patients with impaired systolic function and ventriculoarterial uncoupling. Focusing on PAH, increased TSP2 levels were able to distinguish between adaptive and maladaptive RV phenotypes (area under the curve 0.87, 95% CI 0.76-0.98). Interpretation: The study indicates that plasma TSP2 levels inform on the presence of PH and associate with clinically relevant RV phenotypes in the setting of increased afterload, which may provide insight into processes of RV adaptability.

5.
Hum Gene Ther ; 32(13-14): 771-781, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33023320

RESUMEN

Adeno-associated viral (AAV) vectors are becoming increasingly popular in basic research as well as in clinical gene therapy. Due to its exceptional resistance against physical and chemical stress, however, the increasing use of AAV in laboratories and clinics around the globe raises safety concerns. Proper decontamination of tools and surfaces based on reliable AAV inactivation is crucial to prevent uncontrolled vector dissemination. Although recommended for AAV decontamination, sodium hypochlorite is not compatible with all surfaces found in the laboratory or clinical environment due to its corrosive nature. We, therefore, compared 0.5% sodium hypochlorite to 0.25% peracetic acid (PAA), a second substance declared effective, and to three less aggressive, commonly available alternative disinfectants 70% ethanol, 1.5% hydrogen peroxide, and 0.45% potassium peroxymonosulfate. The impact of all five disinfectants on virus capsid integrity, viral genome integrity, and infectivity upon different exposure times was tested on AAV2 and AAV5, two serotypes with highly different thermostability. While sodium hypochlorite, potassium peroxymonosulfate, and PAA successfully inactivated AAV2 after 1, 5, and 30 min, respectively, ethanol and hydrogen peroxide did not show significant effects on AAV2 even after exposure for 30 min. For AAV5, only sodium hypochlorite and potassium peroxymonosulfate proved efficient capsid and genome denaturation after incubation for 1 and 30 min, respectively. Consequently, ethanol or hydrogen peroxide should not be considered for routine laboratory or clinical use, while 0.45% potassium peroxymonosulfate and 0.5% sodium hypochlorite represent suitable and broadly effective disinfectants for AAV inactivation.


Asunto(s)
Desinfectantes , Cápside , Proteínas de la Cápside , Dependovirus/genética , Desinfectantes/farmacología , Oxidantes , Hipoclorito de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA