Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Pathog ; 16(9): e1008811, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32903274

RESUMEN

Damage-associated molecular patterns (DAMPs) are endogenous molecules activating the immune system upon release from injured cells. Here we show that the IFI16 protein, once freely released in the extracellular milieu of chronically inflamed tissues, can function as a DAMP either alone or upon binding to lipopolysaccharide (LPS). Specifically, using pull-down and saturation binding experiments, we show that IFI16 binds with high affinity to the lipid A moiety of LPS. Remarkably, IFI16 DAMP activity is potentiated upon binding to subtoxic concentrations of strong TLR4-activating LPS variants, as judged by TLR4-MD2/TIRAP/MyD88-dependent IL-6, IL-8 and TNF-α transcriptional activation and release in stimulated monocytes and renal cells. Consistently, using co-immunoprecipitation (co-IP) and surface plasmon resonance (SPR) approaches, we show that IFI16 is a specific TLR4-ligand and that IFI16/LPS complexes display a faster stimulation turnover on TLR4 than LPS alone. Altogether, our findings point to a novel pathomechanism of inflammation involving the formation of multiple complexes between extracellular IFI16 and subtoxic doses of LPS variants, which then signal through TLR4.


Asunto(s)
Inflamación/inmunología , Neoplasias Renales/inmunología , Leucemia/inmunología , Lipopolisacáridos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptor Toll-Like 4/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Leucemia/metabolismo , Leucemia/patología , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
2.
J Biol Chem ; 295(11): 3635-3651, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31988240

RESUMEN

All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.


Asunto(s)
Núcleo Celular/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Estrés Fisiológico , Animales , Línea Celular Tumoral , Células HeLa , Humanos , Cinética , Melanoma Experimental/enzimología , Melanoma Experimental/patología , Ratones , Células 3T3 NIH , Mononucleótido de Nicotinamida/química , Nicotinamida Fosforribosiltransferasa/química , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas
3.
J Enzyme Inhib Med Chem ; 36(1): 85-97, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33121288

RESUMEN

SNAP-tag ® is a powerful technology for the labelling of protein/enzymes by using benzyl-guanine (BG) derivatives as substrates. Although commercially available or ad hoc produced, their synthesis and purification are necessary, increasing time and costs. To address this limitation, here we suggest a revision of this methodology, by performing a chemo-enzymatic approach, by using a BG-substrate containing an azide group appropriately distanced by a spacer from the benzyl ring. The SNAP-tag ® and its relative thermostable version (SsOGT-H5 ) proved to be very active on this substrate. The stability of these tags upon enzymatic reaction makes possible the exposition to the solvent of the azide-moiety linked to the catalytic cysteine, compatible for the subsequent conjugation with DBCO-derivatives by azide-alkyne Huisgen cycloaddition. Our studies propose a strengthening and an improvement in terms of biotechnological applications for this self-labelling protein-tag.


Asunto(s)
Azidas/química , Metilasas de Modificación del ADN/metabolismo , Colorantes Fluorescentes/química , Azidas/síntesis química , Metilasas de Modificación del ADN/química , Colorantes Fluorescentes/síntesis química , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Especificidad por Sustrato
4.
Biochem Biophys Res Commun ; 524(4): 996-1002, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32059844

RESUMEN

3-isopropylmalate dehydrogenases (LeuB) belong to the leucine biosynthetic pathway and catalyze the irreversible oxidative decarboxylation of 3IPM to 2-ketoisocaproate that is finally converted into leucine by a branched-chain aminotransferase. Since leucine is an essential amino acid for humans, and it is also vital for the growth of many pathogenic bacteria, the enzymes belonging to this pathway can be considered as potential target sites for designing of a new class of antibacterial agents. We have determined the crystal structure of the Haemophilus influenzae LeuB in complex with the cofactor NAD+ and the inhibitor O-IbOHA, at 2.1 Å resolution; moreover, we have investigated the inhibitor mechanism of action by analyzing the enzyme kinetics. The structure of H. influenzae LeuB in complex with the intermediate analog inhibitor displays a fully closed conformation, resembling the previously observed, closed form of the equivalent enzyme of Thiobacillus ferrooxidans in complex with the 3IPM substrate. O-IbOHA was found to bind the active site by adopting the same conformation of 3IPM, and to induce an unreported repositioning of the side chain of the amino acids that participate in the coordination of the ligand. Indeed, the experimentally observed binding mode of O-IbOHA to the H. influenzae LeuB enzyme, reveals aspects of novelty compared to the computational binding prediction performed on M. tuberculosis LeuB. Overall, our data provide new insights for the structure-based rational design of a new class of antibiotics targeting the biosynthesis of leucine in pathogenic bacteria.


Asunto(s)
3-Isopropilmalato Deshidrogenasa/antagonistas & inhibidores , 3-Isopropilmalato Deshidrogenasa/química , Inhibidores Enzimáticos/farmacología , Haemophilus influenzae/enzimología , Ácidos Hidroxámicos/farmacología , 3-Isopropilmalato Deshidrogenasa/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Infecciones por Haemophilus/tratamiento farmacológico , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/química , Simulación del Acoplamiento Molecular , Conformación Proteica/efectos de los fármacos
5.
Biochem Soc Trans ; 48(2): 693-707, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32311017

RESUMEN

Dehydrogenases are oxidoreductase enzymes that play a variety of fundamental functions in the living organisms and have primary roles in pathogen survival and infection processes as well as in cancer development. We review here a sub-set of NAD-dependent dehydrogenases involved in human diseases and the recent advancements in drug development targeting pathogen-associated NAD-dependent dehydrogenases. We focus also on the molecular aspects of the inhibition process listing the structures of the most relevant molecules targeting this enzyme family. Our aim is to review the most impacting findings regarding the discovery of novel inhibitory compounds targeting the selected NAD-dependent dehydrogenases involved in cancer and infectious diseases.


Asunto(s)
Enfermedades Transmisibles/tratamiento farmacológico , Descubrimiento de Drogas , NAD/química , Neoplasias/tratamiento farmacológico , Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/química , Animales , Antimaláricos/uso terapéutico , Antituberculosos/uso terapéutico , Diseño de Fármacos , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Inhibinas/química , Isoenzimas/química , Malaria/tratamiento farmacológico , Tuberculosis/tratamiento farmacológico
6.
J Nat Prod ; 83(6): 1740-1750, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32496797

RESUMEN

Bitter taste receptors (hTAS2R) are expressed ectopically in various tissues, raising the possibility of a pharmacological exploitation. This seems of particular relevance in airways, since hTAS2Rs are involved in the protection of the aerial tissues from infections and in bronchodilation. The bis-guaianolide absinthin (1), one of the most bitter compounds known, targets the hTAS2R46 bitter receptor. Absinthin (1), an unstable compound, readily turns into anabsinthin (2) with substantial retention of the bitter properties, and this compound was used as a starting material to explore the chemical space around the bis-guaianolide bitter pharmacophore. Capitalizing on the chemoselective opening of the allylic lactone ring, the esters 3 and 4, and the nor-azide 6 were prepared and assayed on human bronchoepithelial (BEAS-2B) cells expressing hTAS2R46. Anti-inflammatory activity was evaluated by measuring the expression of MUC5AC, iNOS, and cytokines, as well as the production of superoxide anion, qualifying the methyl ester 3 as the best candidate for additional studies.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Bronquios/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Sesquiterpenos de Guayano/farmacología , Artemisia/química , Bronquios/citología , Calcio/metabolismo , Línea Celular , Citocinas/antagonistas & inhibidores , Ésteres/química , Humanos , Estructura Molecular , Mucina 5B/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Superóxidos/metabolismo , Papilas Gustativas
7.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326075

RESUMEN

The genome of living cells is continuously exposed to endogenous and exogenous attacks, and this is particularly amplified at high temperatures. Alkylating agents cause DNA damage, leading to mutations and cell death; for this reason, they also play a central role in chemotherapy treatments. A class of enzymes known as AGTs (alkylguanine-DNA-alkyltransferases) protects the DNA from mutations caused by alkylating agents, in particular in the recognition and repair of alkylated guanines in O6-position. The peculiar irreversible self-alkylation reaction of these enzymes triggered numerous studies, especially on the human homologue, in order to identify effective inhibitors in the fight against cancer. In modern biotechnology, engineered variants of AGTs are developed to be used as protein tags for the attachment of chemical ligands. In the last decade, research on AGTs from (hyper)thermophilic sources proved useful as a model system to clarify numerous phenomena, also common for mesophilic enzymes. This review traces recent progress in this class of thermozymes, emphasizing their usefulness in basic research and their consequent advantages for in vivo and in vitro biotechnological applications.


Asunto(s)
Reparación del ADN , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Alquilación , Biotecnología , Daño del ADN , Replicación del ADN , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , O(6)-Metilguanina-ADN Metiltransferasa/química , O(6)-Metilguanina-ADN Metiltransferasa/genética , Relación Estructura-Actividad , Termodinámica , Thermoproteus/genética , Thermoproteus/metabolismo
8.
Molecules ; 25(5)2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156001

RESUMEN

Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis (TB), an ancient disease which still today causes 1.4 million deaths worldwide per year. Long-term, multi-agent anti-tubercular regimens can lead to the anticipated non-compliance of the patient and increased drug toxicity, which in turn can contribute to the emergence of drug-resistant MTB strains that are not susceptible to first- and second-line available drugs. Hence, there is an urgent need for innovative antitubercular drugs and vaccines. A number of biochemical processes are required to maintain the correct homeostasis of DNA metabolism in all organisms. Here we focused on reviewing our current knowledge and understanding of biochemical and structural aspects of relevance for drug discovery, for some such processes in MTB, and particularly DNA synthesis, synthesis of its nucleotide precursors, and processes that guarantee DNA integrity and genome stability. Overall, the area of drug discovery in DNA metabolism appears very much alive, rich of investigations and promising with respect to new antitubercular drug candidates. However, the complexity of molecular events that occur in DNA metabolic processes requires an accurate characterization of mechanistic details in order to avoid major flaws, and therefore the failure, of drug discovery approaches targeting genome integrity.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Ribonucleótidos/biosíntesis , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Descubrimiento de Drogas/métodos , Genoma Bacteriano
9.
Biochem Biophys Res Commun ; 516(1): 189-195, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31208721

RESUMEN

Hydroxyprolines (Hyp) are non-standard amino acids derived from the post-translational modification of proteins by prolyl hydroxylase enzymes. Some plants and bacteria produce Hyp, and the isomers trans-3-Hydroxy-l-proline (T3LHyp) and trans-4-Hydroxy-l-proline (T4LHyp) are major components of mammalian collagen. While T4LHyp is metabolised following distinct degradative pathways in mammals and bacteria, T3LHyp metabolic pathway is conserved in bacteria, plants and mammals, and involves a T3LHyp dehydratase (T3LHypD) in the first degradation step. We report here the crystal structure of T3LHypD from the archaea Thermococcus litoralis in the free and substrate-complexed form. The model shows an "open" and a "closed" conformation depending on the presence (or absence) of the substrate in the catalytic site and allows the mapping of the residues involved in ligand recognition. Moreover, the structure highlights the presence of a water molecule interacting with the hydroxy group of the substrate and potentially involved in catalysis. The structure here reported is the first of its family to be elucidated, and represents a valid model for rationalising the substrate specificity and catalysis of T3LHyp dehydratases.


Asunto(s)
Proteínas Arqueales/metabolismo , Hidroliasas/metabolismo , Hidroxiprolina/metabolismo , Thermococcus/enzimología , Proteínas Arqueales/química , Dominio Catalítico , Cristalografía por Rayos X , Hidroliasas/química , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Thermococcus/química , Thermococcus/metabolismo
10.
Proteins ; 86(1): 98-109, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29082541

RESUMEN

During its life cycle Mycobacterium tuberculosis (MTB) must face a variety of environmental and endogenous physical and chemical stresses that could produce genotoxic damage. However, MTB possesses efficient systems to counteract the harmful effects of DNA-damaging assaults. The nucleotide excision repair (NER) is a highly conserved multi-enzymatic cascade that is initiated by the concerted action of three core proteins, that is UvrA, UvrB, and UvrC. Although the functional roles of these enzymes are well characterized, the intra-pathway coordination of the NER components and the dynamics of their association is still a matter of debate. In the presented study, we analyzed the hydrodynamic properties and the oligomeric state of the MTB UvrB protein (MtUvrB) that we expressed and purified to homogeneity in a tag-free form. Our results show that, differently to what has been previously observed for the His-tagged version of the protein, MtUvrB forms dimers in solution, which are characterized by an elongated shape, as determined by small-angle X-ray scattering analysis. Moreover, to gain insights into the mycobacterial UvrA/UvrB lesion sensing/tracking complex we adopted a size-exclusion chromatography-based approach, revealing that the two proteins interact in the absence of ligands, leading to the assembling of A2 B2 hetero-tetramers in solution. Surface plasmon resonance analysis showed that the dissociation constant of the MtUvrA/MtUvrB complex falls in the low micromolar range that could represent the basis for a fine modulation of the complex architecture accompanying the multi-step DNA repair activity of mycobacterial NER.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , ADN Helicasas/química , Mycobacterium tuberculosis/química , Cromatografía Líquida de Alta Presión/métodos , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , Ligandos , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Soluciones , Resonancia por Plasmón de Superficie/métodos
11.
Biochem Biophys Res Commun ; 500(3): 698-703, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29684348

RESUMEN

The self-labeling protein tags are robust and versatile tools for studying different molecular aspects of cell biology. In order to be suitable for a wide spectrum of experimental conditions, it is mandatory that these systems are stable after the fluorescent labeling reaction and do not alter the properties of the fusion partner. SsOGT-H5 is an engineered variant alkylguanine-DNA-alkyl-transferase (OGT) of the hyperthermophilic archaeon Sulfolobus solfataricus, and it represents an alternative solution to the SNAP-tag® technology under harsh reaction conditions. Here we present the crystal structure of SsOGT-H5 in complex with the fluorescent probe SNAP-Vista Green® (SsOGT-H5-SVG) that reveals the conformation adopted by the protein upon the trans-alkylation reaction with the substrate, which is observed covalently bound to the catalytic cysteine residue. Moreover, we identify the amino acids that contribute to both the overall protein stability in the post-reaction state and the coordination of the fluorescent moiety stretching-out from the protein active site. We gained new insights in the conformational changes possibly occurring to the OGT proteins upon reaction with modified guanine base bearing bulky adducts; indeed, our structural analysis reveals an unprecedented conformation of the active site loop that is likely to trigger protein destabilization and consequent degradation. Interestingly, the SVG moiety plays a key role in restoring the interaction between the N- and C-terminal domains of the protein that is lost following the new conformation adopted by the active site loop in the SsOGT-H5-SVG structure. Molecular dynamics simulations provide further information into the dynamics of SsOGT-H5-SVG structure, highlighting the role of the fluorescent ligand in keeping the protein stable after the trans-alkylation reaction.


Asunto(s)
Colorantes Fluorescentes/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/química , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Coloración y Etiquetado , Sulfolobus solfataricus/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Colorantes Fluorescentes/química , Metilación , Simulación de Dinámica Molecular , Mutación/genética , Análisis de Componente Principal , Conformación Proteica , Sulfolobus solfataricus/química , Sulfolobus solfataricus/genética
12.
Biochim Biophys Acta Gen Subj ; 1861(2): 86-96, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27777086

RESUMEN

BACKGROUND: Alkylated DNA-protein alkyltransferases (AGTs) are conserved proteins that repair alkylation damage in DNA by using a single-step mechanism leading to irreversible alkylation of the catalytic cysteine in the active site. Trans-alkylation induces inactivation and destabilization of the protein, both in vitro and in vivo, likely triggering conformational changes. A complete picture of structural rearrangements occurring during the reaction cycle is missing, despite considerable interest raised by the peculiarity of AGT reaction, and the contribution of a functional AGT in limiting the efficacy of chemotherapy with alkylating drugs. METHODS: As a model for AGTs we have used a thermostable ortholog from the archaeon Sulfolobus solfataricus (SsOGT), performing biochemical, structural, molecular dynamics and in silico analysis of ligand-free, DNA-bound and mutated versions of the protein. RESULTS: Conformational changes occurring during lesion recognition and after the reaction, allowed us to identify a novel interaction network contributing to SsOGT stability, which is perturbed when a bulky adduct between the catalytic cysteine and the alkyl group is formed, a mandatory step toward the permanent protein alkylation. CONCLUSIONS: Our data highlighted conformational changes and perturbation of intramolecular interaction occurring during lesion recognition and catalysis, confirming our previous hypothesis that coordination between the N- and C-terminal domains of SsOGT is important for protein activity and stability. GENERAL SIGNIFICANCE: A general model of structural rearrangements occurring during the reaction cycle of AGTs is proposed. If confirmed, this model might be a starting point to design strategies to modulate AGT activity in therapeutic settings.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Alquilantes/metabolismo , Alquilación/fisiología , Catálisis , Reparación del ADN/fisiología , Dominios Proteicos , Estabilidad Proteica , Sulfolobus solfataricus/metabolismo
13.
Biochem J ; 473(2): 123-33, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26512127

RESUMEN

Mycobacterium tuberculosis O(6)-methylguanine-DNA methyltransferase (MtOGT) contributes to protect the bacterial GC-rich genome against the pro-mutagenic potential of O(6)-methylated guanine in DNA. Several strains of M. tuberculosis found worldwide encode a point-mutated O(6)-methylguanine-DNA methyltransferase (OGT) variant (MtOGT-R37L), which displays an arginine-to-leucine substitution at position 37 of the poorly functionally characterized N-terminal domain of the protein. Although the impact of this mutation on the MtOGT activity has not yet been proved in vivo, we previously demonstrated that a recombinant MtOGT-R37L variant performs a suboptimal alkylated-DNA repair in vitro, suggesting a direct role for the Arg(37)-bearing region in catalysis. The crystal structure of MtOGT complexed with modified DNA solved in the present study reveals details of the protein-protein and protein-DNA interactions occurring during alkylated-DNA binding, and the protein capability also to host unmodified bases inside the active site, in a fully extrahelical conformation. Our data provide the first experimental picture at the atomic level of a possible mode of assembling three adjacent MtOGT monomers on the same monoalkylated dsDNA molecule, and disclose the conformational flexibility of discrete regions of MtOGT, including the Arg(37)-bearing random coil. This peculiar structural plasticity of MtOGT could be instrumental to proper protein clustering at damaged DNA sites, as well as to protein-DNA complexes disassembling on repair.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Daño del ADN/genética , Mycobacterium tuberculosis/genética , O(6)-Metilguanina-ADN Metiltransferasa/química , O(6)-Metilguanina-ADN Metiltransferasa/genética , Cristalografía , Mutación Puntual/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
14.
Nucleic Acids Res ; 43(18): 8801-16, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26227971

RESUMEN

Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Reparación del ADN , Transferasas Alquil y Aril/genética , Alquilación , Proteínas Arqueales/genética , ADN/metabolismo , Estabilidad de Enzimas , Modelos Moleculares , Mutación , Relación Estructura-Actividad , Sulfolobus solfataricus/enzimología
15.
Int J Mol Sci ; 18(12)2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29206193

RESUMEN

O6-DNA-alkyl-guanine-DNA-alkyl-transferases (OGTs) are evolutionarily conserved, unique proteins that repair alkylation lesions in DNA in a single step reaction. Alkylating agents are environmental pollutants as well as by-products of cellular reactions, but are also very effective chemotherapeutic drugs. OGTs are major players in counteracting the effects of such agents, thus their action in turn affects genome integrity, survival of organisms under challenging conditions and response to chemotherapy. Numerous studies on OGTs from eukaryotes, bacteria and archaea have been reported, highlighting amazing features that make OGTs unique proteins in their reaction mechanism as well as post-reaction fate. This review reports recent functional and structural data on two prokaryotic OGTs, from the pathogenic bacterium Mycobacterium tuberculosis and the hyperthermophilic archaeon Sulfolobus solfataricus, respectively. These studies provided insight in the role of OGTs in the biology of these microorganisms, but also important hints useful to understand the general properties of this class of proteins.


Asunto(s)
Reparación del ADN/fisiología , Sincrotrones , Transferasas Alquil y Aril/genética , Reparación del ADN/genética , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Estabilidad Proteica , Sulfolobus solfataricus/enzimología , Sulfolobus solfataricus/metabolismo
17.
Biochim Biophys Acta ; 1834(1): 169-81, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23000429

RESUMEN

O-acetylserine sulfhydrylase (OASS) catalyzes the synthesis of l-cysteine in the last step of the reductive sulfate assimilation pathway in microorganisms. Its activity is inhibited by the interaction with serine acetyltransferase (SAT), the preceding enzyme in the metabolic pathway. Inhibition is exerted by the insertion of SAT C-terminal peptide into the OASS active site. This action is effective only on the A isozyme, the prevalent form in enteric bacteria under aerobic conditions, but not on the B-isozyme, the form expressed under anaerobic conditions. We have investigated the active site determinants that modulate the interaction specificity by comparing the binding affinity of thirteen pentapeptides, derived from the C-terminal sequences of SAT of the closely related species Haemophilus influenzae and Salmonella typhimurium, towards the corresponding OASS-A, and towards S. typhimurium OASS-B. We have found that subtle changes in protein active sites have profound effects on protein-peptide recognition. Furthermore, affinity is strongly dependent on the pentapeptide sequence, signaling the relevance of P3-P4-P5 for the strength of binding, and P1-P2 mainly for specificity. The presence of an aromatic residue at P3 results in high affinity peptides with K(diss) in the micromolar and submicromolar range, regardless of the species. An acidic residue, like aspartate at P4, further strengthens the interaction and results in the higher affinity ligand of S. typhimurium OASS-A described to date. Since OASS knocked-out bacteria exhibit a significantly decreased fitness, this investigation provides key information for the development of selective OASS inhibitors, potentially useful as novel antibiotic agents.


Asunto(s)
Proteínas Bacterianas/química , Cisteína Sintasa/química , Haemophilus influenzae/enzimología , Salmonella typhimurium/enzimología , Serina O-Acetiltransferasa/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cisteína Sintasa/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Péptidos/química , Péptidos/metabolismo , Serina O-Acetiltransferasa/metabolismo
18.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 386-396, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805244

RESUMEN

Over the years, human dihydroorotate dehydrogenase (hDHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy. In the present work, using X-ray crystallography, an atypical rearrangement was identified in the binding pose of a potent inhibitor characterized by a polar pyridine-based moiety (compound 18). The crystal structure shows that upon binding compound 18 the dynamics of a protein loop involved in a gating mechanism at the cofactor-binding site is modulated by the presence of three water molecules, thus fine-tuning the polarity/hydrophobicity of the binding pocket. These solvent molecules are engaged in the formation of a hydrogen-bond mesh in which one of them establishes a direct contact with the pyridine moiety of compound 18, thus paving the way for a reappraisal of the inhibition of hDHODH. Using an integrated approach, the thermodynamics of such a modulation is described by means of isothermal titration calorimetry coupled with molecular modelling. These structural insights will guide future drug design to obtain a finer Kd/logD7.4 balance and identify membrane-permeable molecules with a drug-like profile in terms of water solubility.


Asunto(s)
Dihidroorotato Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Cristalografía por Rayos X/métodos , Sitios de Unión , Piridinas/química , Piridinas/farmacología , Conformación Proteica , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Unión Proteica , Enlace de Hidrógeno
19.
J Bacteriol ; 195(12): 2728-36, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23564173

RESUMEN

Mycobacterium tuberculosis displays remarkable genetic stability despite continuous exposure to the hostile environment represented by the host's infected macrophages. Similarly to other organisms, M. tuberculosis possesses multiple systems to counteract the harmful potential of DNA alkylation. In particular, the suicidal enzyme O(6)-methylguanine-DNA methyltransferase (OGT) is responsible for the direct repair of O(6)-alkylguanine in double-stranded DNA and is therefore supposed to play a central role in protecting the mycobacterial genome from the risk of G · C-to-A · T transition mutations. Notably, a number of geographically widely distributed M. tuberculosis strains shows nonsynonymous single-nucleotide polymorphisms in their OGT-encoding gene, leading to amino acid substitutions at position 15 (T15S) or position 37 (R37L) of the N-terminal domain of the corresponding protein. However, the role of these mutations in M. tuberculosis pathogenesis is unknown. We describe here the in vitro characterization of M. tuberculosis OGT (MtOGT) and of two point-mutated versions of the protein mimicking the naturally occurring ones, revealing that both mutated proteins are impaired in their activity as a consequence of their lower affinity for alkylated DNA than the wild-type protein. The analysis of the crystal structures of MtOGT and MtOGT-R37L confirms the high level of structural conservation of members of this protein family and provides clues to an understanding of the molecular bases for the reduced affinity for the natural substrate displayed by mutated MtOGT. Our in vitro results could contribute to validate the inferred participation of mutated OGTs in M. tuberculosis phylogeny and biology.


Asunto(s)
Mycobacterium tuberculosis/enzimología , O(6)-Metilguanina-ADN Metiltransferasa/genética , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Análisis Mutacional de ADN , ADN Bacteriano/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/química , Mutación Puntual , Unión Proteica , Conformación Proteica
20.
FEBS Lett ; 597(16): 2119-2132, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37278160

RESUMEN

Mycobacterium tuberculosis (MTB) is the etiologic agent of tuberculosis (TB), an ancient disease which causes 1.5 million deaths worldwide. Dihydroorotate dehydrogenase (DHODH) is a key enzyme of the MTB de novo pyrimidine biosynthesis pathway, and it is essential for MTB growth in vitro, hence representing a promising drug target. We present: (i) the biochemical characterization of the full-length MTB DHODH, including the analysis of the kinetic parameters, and (ii) the previously unreleased crystal structure of the protein that allowed us to rationally screen our in-house chemical library and identify the first selective inhibitor of mycobacterial DHODH. The inhibitor has fluorescence properties, potentially instrumental to in cellulo imaging studies, and exhibits an IC50 value of 43 µm, paving the way to hit-to-lead process.


Asunto(s)
Mycobacterium tuberculosis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Tuberculosis , Humanos , Dihidroorotato Deshidrogenasa , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA