Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(21): 8604-8612, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38691094

RESUMEN

Chemical ionization (CI) atmospheric pressure interface mass spectrometry is a unique analytical technique for its low detection limits, softness to preserve molecular information, and selectivity for particular classes of species. Here, we present a fast polarity switching approach for highly sensitive online analysis of a wide range of trace species in complex samples using selective CI chemistries and high-resolution mass spectrometry. It is achieved by successfully coupling a multischeme chemical ionization inlet (MION) and an Orbitrap Fourier transform mass spectrometer. The capability to flexibly combine ionization chemistries from both polarities effectively extends the detectability compared to using only one ionization chemistry, as commonly used positive and negative reagent ions tend to be sensitive to different classes of species. We tested the performance of the MION-Orbitrap using reactive gaseous organic species generated by α-pinene ozonolysis in an environmental chamber and a standard mixture of 71 pesticides. Diethylammonium and nitrate are used as reagent ions in positive and negative polarities. We show that with a mass resolving power of 280,000, the MION-Orbitrap can switch and measure both polarities within 1 min, which is sufficiently fast and stable to follow the temporal evolution of reactive organic species and the thermal desorption profile of pesticides. We detected 23 of the 71 pesticides in the mixture using only nitrate as the reagent ion. Facilitated by polarity switching, we also detected 47 pesticides using diethylammonium, improving the total number of detected species to 59. For reactive organic species generated by α-pinene ozonolysis, we show that combining diethylammonium and nitrate addresses the need to measure oxygenated molecules in atmospheric environments with a wide range of oxidation states. These results indicate that the polarity switching MION-Orbitrap can promisingly serve as a versatile tool for the nontargeted chemical analysis of trace species in various applications.

2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33479177

RESUMEN

Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.e., iodine monochloride [ICl] and iodine monobromide [IBr]) in a midlatitude coastal environment. Significant levels of ICl and IBr with mean daily maxima of 4.3 and 3.0 parts per trillion by volume (1-min average), respectively, have been observed throughout the campaign. We show that the heterogeneous reaction of HOI on marine aerosol and subsequent production of iodine interhalogens are much faster than previously thought. These results indicate that the fast formation of iodine interhalogens, together with their rapid photolysis, results in more efficient recycling of atomic iodine than currently considered in models. Photolysis of the observed ICl and IBr leads to a 32% increase in the daytime average of atomic iodine production rate, thereby enhancing the average daytime iodine-catalyzed ozone loss rate by 10 to 20%. Our findings provide direct field evidence that the autocatalytic mechanism of iodine release from marine aerosol is important in the atmosphere and can have significant impacts on atmospheric oxidation capacity.

3.
Nature ; 476(7361): 429-33, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21866156

RESUMEN

Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100-1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H(2)SO(4)-H(2)O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.

4.
ACS Omega ; 8(29): 25749-25757, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521638

RESUMEN

In this work, the detection characteristics of a large group of common pesticides were investigated using a multi-scheme chemical ionization inlet (MION) with a thermal desorption unit (Karsa Ltd.) connected to an Orbitrap (Velos Pro, Thermo Fisher Scientific) mass spectrometer. Standard pesticide mixtures, fruit extracts, untreated fruit juice, and whole fruit samples were inspected. The pesticide mixtures contained 1 ng of each individual target. Altogether, 115 pesticides were detected, with a set of different reagents (i.e., dibromomethane, acetonylacetone, and water) in different polarity modes. The measurement methodology presented was developed to minimize the common bottlenecks originating from sample pretreatments and nonetheless was able to retrieve 92% of the most common pesticides regularly analyzed with standardized UHPLC-MSMS (ultra-high-performance liquid chromatography with tandem mass spectrometry) procedures. The fraction of detected targets of two standard pesticide mixtures generally quantified by GC-MSMS (gas chromatography with tandem mass spectrometry) methodology was much less, equaling 45 and 34%. The pineapple swabbing experiment led to the detection of fludioxonil and diazinon below their respective maximum residue levels (MRLs), whereas measurements of untreated pineapple juice and other fruit extracts led to retrieval of dimethomorph, dinotefuran, imazalil, azoxystrobin, thiabendazole, fludioxonil, and diazinon, also below their MRL. The potential for mutual detection was investigated by mixing two standard solutions and by spiking an extract of fruit with a pesticide's solution, and subsequently, individual compounds were simultaneously detected. For a selected subgroup of compounds, the bromide (Br-) chemical ionization characteristics were further inspected using quantum chemical computations to illustrate the structural features leading to their sensitive detection. Importantly, pesticides could be detected in actual extract and fruit samples, which demonstrates the potential of our fast screening method.

5.
Talanta ; 249: 123653, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35691127

RESUMEN

Illegal explosives are a threat to aviation, transport sector, critical infrastructure and generally to public safety. Their detection requires extremely sensitive instruments with efficient workflows that allow large throughput of items. In this study, we built a trace explosives detection instrument that requires minimal sample treatment and reaches ultra-low picogram level detection limits for many common explosives. The instrument is based on thermal desorption of filters, which allows analysis of liquid and solid phase samples, and subsequent selective atmospheric pressure chemical ionization and detection with a mass spectrometer. We performed experiments to scope the optimal ionization chemistry for the system and selected Br- as the reagent ion, and measured the limit of detection for 14 different explosives that were generally in the picogram range. Finally, we demonstrate the usability of the system by sampling air to a filter from a storage room known to contain explosives, from which we detect four different explosives.


Asunto(s)
Sustancias Explosivas , Presión Atmosférica , Fenómenos Químicos , Sustancias Explosivas/análisis , Indicadores y Reactivos , Espectrometría de Masas/métodos
6.
Science ; 339(6122): 943-6, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23430652

RESUMEN

Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation--more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA