Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mov Disord ; 39(10): 1773-1783, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39132902

RESUMEN

BACKGROUND: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. OBJECTIVES: Our goal was to investigate the effects of genetic variants on risk and time to LID. METHODS: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores (PRS) including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1612 PD patients with and 3175 without LID. RESULTS: We found that GBA1 variants were associated with LID risk (odds ratio [OR] = 1.65; 95% confidence interval [CI], 1.21-2.26; P = 0.0017) and LRRK2 variants with reduced time to LID onset (hazard ratio [HR] = 1.42; 95% CI, 1.09-1.84; P = 0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile = 1.27; 95% CI, 1.03-1.56; P = 0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile = 1.38; 95% CI, 1.07-1.79; P = 0.0128; HRfourth_quartile = 1.38; 95% CI = 1.06-1.78; P = 0.0147). CONCLUSIONS: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Discinesia Inducida por Medicamentos , Estudio de Asociación del Genoma Completo , Glucosilceramidasa , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Levodopa , Enfermedad de Parkinson , Humanos , Levodopa/efectos adversos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/tratamiento farmacológico , Discinesia Inducida por Medicamentos/genética , Masculino , Femenino , Anciano , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Glucosilceramidasa/genética , Persona de Mediana Edad , Dopamina/metabolismo , Antiparkinsonianos/efectos adversos , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética
2.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35806091

RESUMEN

Parkinson's disease (PD) is generally considered a sporadic disorder, but a strong genetic background is often found. The aim of this study was to identify the underlying genetic cause of PD in two affected siblings and to subsequently assess the role of mutations in Cathepsin B (CTSB) in susceptibility to PD. A typical PD family was identified and whole-exome sequencing was performed in two affected siblings. Variants of interest were validated using Sanger sequencing. CTSB p.Gly284Val was genotyped in 2077 PD patients and 615 unrelated healthy controls from the Czech Republic, Ireland, Poland, Ukraine, and the USA. The gene burden analysis was conducted for the CTSB gene in an additional 769 PD probands from Mayo Clinic Florida familial PD cohort. CTSB expression and activity in patient-derived fibroblasts and controls were evaluated by qRT-PCR, western blot, immunocytochemistry, and enzymatic assay. The CTSB p.Gly284Val candidate variant was only identified in affected family members. Functional analysis of CTSB patient-derived fibroblasts under basal conditions did not reveal overt changes in endogenous expression, subcellular localization, or enzymatic activity in the heterozygous carrier of the CTSB variant. The identification of the CTSB p.Gly284Val may support the hypothesis that the CTSB locus harbors variants with differing penetrance that can determine the disease risk.


Asunto(s)
Catepsina B/metabolismo , Enfermedad de Parkinson , Catepsina B/genética , Genotipo , Heterocigoto , Humanos , Enfermedad de Parkinson/genética , Penetrancia
3.
Clin Auton Res ; 31(1): 117-125, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33502644

RESUMEN

PURPOSE: Investigate single nucleotide variants and short tandem repeats in 39 genes related to spinocerebellar ataxia in clinical and pathologically defined cohorts of multiple system atrophy. METHODS: Exome sequencing was conducted in 28 clinical multiple system atrophy patients to identify single nucleotide variants in spinocerebellar ataxia-related genes. Novel variants were validated in two independent disease cohorts: 86 clinically diagnosed multiple system atrophy patients and 166 pathological multiple system atrophy cases. Expanded repeat alleles in spinocerebellar ataxia genes were evaluated in 36 clinically diagnosed multiple system atrophy patients, and CAG/CAA repeats in TATA-Box Binding Protein (TBP, causative of SCA17) were screened in 216 clinical and pathological multiple system atrophy patients and 346 controls. RESULTS: No known pathogenic spinocerebellar ataxia single nucleotide variants or pathogenic range expanded repeat alleles of ATXN1, ATXN2, ATXN3, CACNA1A, AXTN7, ATXN8OS, ATXN10, PPP2R2B, and TBP were detected in any clinical multiple system atrophy patients. However, four novel variants were identified in four spinocerebellar ataxia-related genes across three multiple system atrophy patients. Additionally, four multiple system atrophy patients (1.6%) and one control (0.3%) carried an intermediate length 41 TBP CAG/CAA repeat allele (OR = 4.11, P = 0.21). There was a significant association between the occurrence of a repeat length of longer alleles (> 38 repeats) and an increased risk of multiple system atrophy (OR = 1.64, P = 0.03). CONCLUSION: Occurrence of TBP CAG/CAA repeat length of longer alleles (> 38 repeats) is significantly associated with increased multiple system atrophy risk. This discovery warrants further investigation and supports a possible genetic overlap of multiple system atrophy with SCA17.


Asunto(s)
Atrofia de Múltiples Sistemas , Ataxias Espinocerebelosas , Ataxina-10 , Humanos , Atrofia de Múltiples Sistemas/genética , Mutación , Ataxias Espinocerebelosas/genética , Proteína de Unión a TATA-Box/genética , Expansión de Repetición de Trinucleótido
4.
Neurol Neurochir Pol ; 55(3): 300-305, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34037980

RESUMEN

INTRODUCTION: Chromosomal aberrations are rare but important causes of various movement disorders. In cases of movement disorders associated with dysmorphic features, multiorgan involvement and/or intellectual disability, the identification of causative chromosomal aberrations should be considered. AIM OF THE STUDY: The purpose of this article was to summarise clinical findings in six patients with dystonia and two with parkinsonism and identified chromosomal aberrations in a single-centre prospective study. MATERIALS AND METHODS: 15 adult patients with dystonia or parkinsonism were referred to array comparative genomic hybridisation (aCGH) testing from our Department of Neurology between 2014 and 2019. Additionally, one patient had a karyotype examination. Detailed clinical, psychological and radiological diagnostics were performed in each case. RESULTS: Chromosomal aberrations were identified in six patients with dystonia and two with parkinsonism. Two patients were identified with aberrations associated with de Grouchy syndrome. We also reported generalised dystonia in patients with deletion in 3q26.31 and duplication in 3p26.3, as well as dystonia and hypoacusis in a patient with duplication in Xq26.3. One patient was diagnosed with duplication in 21q21.1. Early-onset parkinsonism was a manifestation of deletion in the 2q24.1 region. Late onset parkinsonism was also present in the patient with the most severe aberrations (duplication 1q21.1q44; deletion 10p15.3p15.1; deletion 10q11.21). CONCLUSIONS: Dystonia and parkinsonism are possible manifestations of chromosomal aberrations. Chromosomal aberrations should be excluded in patients with early-onset movement disorders and concomitant dysmorphic features and/or intellectual disability. It is important to include this cause of movement disorders in future classifications. aCGH can be a valuable diagnostic tool in the evaluation of movement disorder aetiology.


Asunto(s)
Distonía , Discapacidad Intelectual , Trastornos del Movimiento , Adulto , Aberraciones Cromosómicas , Humanos , Estudios Prospectivos
5.
Neurol Neurochir Pol ; 55(3): 241-252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539026

RESUMEN

INTRODUCTION: Genetic forms of Parkinson's disease (PD) often cluster in different ethnic groups and may present with recognisable unique clinical manifestations. Our aim was to summarise the current state of knowledge regarding the genetic causes of PD and describe the first Polish patient with SNCA duplication. METHODOLOGY: We searched the electronic database, PubMed, for studies between January 1995 and June 2020 that evaluated genetics in Polish patients with PD, using the search terms 'Parkinson's disease, 'Polish', 'genetics', 'mutations', and 'variants'. RESULTS: In total, 73 publications were included in the review; 11 genes responsible for monogenic forms and 19 risk factor genes have been analysed in the Polish population. Pathogenic variants were reported in four monogenic genes (LRRK2, PRKN, PINK1, and SNCA). Eight genes were associated with PD risk in the Polish population (GBA, TFAM, NFE2L2, MMP12, HLA-DRA, COMT, MAOB, and DBH). Multiplex ligation-dependent probe amplification and Sanger sequencing in PRKN, PINK1, DJ1, LRRK2, and SNCA revealed SNCA duplication in a 43-year-old Polish patient with PD examined by movement disorder specialists. CONCLUSION: Only a limited number of positive results have been reported in genes previously associated with PD in the Polish population. In the era of personalised medicine, it is important to report on genetic findings in specific populations.


Asunto(s)
Enfermedad de Parkinson , Adulto , Predisposición Genética a la Enfermedad , Humanos , Mutación , Polonia
7.
medRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37790572

RESUMEN

Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. Objectives: To investigate the effects of genetic variants on risk and time to LID. Methods: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1,612 PD patients with and 3,175 without LID. Results: We found that GBA1 variants were associated with LID risk (OR=1.65, 95% CI=1.21-2.26, p=0.0017) and LRRK2 variants with reduced time to LID onset (HR=1.42, 95% CI=1.09-1.84, p=0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile=1.27, 95% CI=1.03-1.56, p=0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile=1.38, 95% CI=1.07-1.79, p=0.0128; HRfourth_quartile=1.38, 95% CI=1.06-1.78, p=0.0147). Conclusions: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care.

8.
NPJ Regen Med ; 7(1): 45, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064798

RESUMEN

Peripheral nerve injury (PNI) often results in spontaneous motor recovery; however, how disrupted cerebellar circuitry affects PNI-associated motor recovery is unknown. Here, we demonstrated disrupted cerebellar circuitry and poor motor recovery in ataxia mice after PNI. This effect was mimicked by deep cerebellar nuclei (DCN) lesion, but not by damaging non-motor area hippocampus. By restoring cerebellar circuitry through DCN stimulation, and reversal of neurotransmitter imbalance using baclofen, ataxia mice achieve full motor recovery after PNI. Mechanistically, elevated glutamate-glutamine level was detected in DCN of ataxia mice by magnetic resonance spectroscopy. Transcriptomic study revealed that Gria1, an ionotropic glutamate receptor, was upregulated in DCN of control mice but failed to be upregulated in ataxia mice after sciatic nerve crush. AAV-mediated overexpression of Gria1 in DCN rescued motor deficits of ataxia mice after PNI. Finally, we found a correlative decrease in human GRIA1 mRNA expression in the cerebellum of patients with ataxia-telangiectasia and spinocerebellar ataxia type 6 patient iPSC-derived Purkinje cells, pointing to the clinical relevance of glutamatergic system. By conducting a large-scale analysis of 9,655,320 patients with ataxia, they failed to recover from carpal tunnel decompression surgery and tibial neuropathy, while aged-match non-ataxia patients fully recovered. Our results provide insight into cerebellar disorders and motor deficits after PNI.

9.
Parkinsonism Relat Disord ; 101: 66-74, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803092

RESUMEN

BACKGROUND: PLA2G6-Associated Neurodegeneration, PLAN, is subdivided into: Infantile neuroaxonal dystrophy, atypical neuroaxonal dystrophy, and adult-onset dystonia parkinsonism [1]. It is elicited by a biallelic pathogenic variant in phospholipase A2 group VI (PLA2G6) gene. In this study we describe new cases and provide a comprehensive review of previously published cases. METHODS: Eleven patients, from four different institutions and four different countries. All underwent a comprehensive chart review. RESULTS: Ages at onset ranged from 1 to 36 years, with a median of 16 and a mean of 16.18 ± 11.91 years. Phenotypic characteristics were heterogenous and resembled that of patients with infantile neuroaxonal dystrophy (n = 2), atypical neuroaxonal dystrophy (n = 1), adult-onset dystonia parkinsonism (n = 1), complex hereditary spastic paraparesis (n = 3), and early onset Parkinson's disease (n = 2). Parental genetic studies were performed for all patients and confirmed with sanger sequencing in five. Visual evoked potential illustrated optic atrophy in P4. Mineralization was evident in brain magnetic resonance imaging of P1, P2, P4, P5, P7, and P11. Single photon emission computed tomography was conducted for three patients, revealed decreased perfusion in the occipital lobes for P10. DaTscan was performed for P11 and showed decreased uptake in the deep gray matter, bilateral caudate nuclei, and bilateral putamen. Positive response to Apomorphine was noted for P10 and to Baclofen in P2, and P3. CONCLUSIONS: PLAN encompasses a wide clinical spectrum. Age and symptom at onset are crucial when classifying patients. Reporting new variants is critical to draw more attention to this condition and identify biomarkers to arrive at potential therapeutics.


Asunto(s)
Trastornos Distónicos , Distrofias Neuroaxonales , Trastornos Parkinsonianos , Adolescente , Adulto , Niño , Preescolar , Potenciales Evocados Visuales , Fosfolipasas A2 Grupo VI/deficiencia , Fosfolipasas A2 Grupo VI/genética , Humanos , Lactante , Trastornos del Metabolismo del Hierro , Mutación , Distrofias Neuroaxonales/diagnóstico por imagen , Distrofias Neuroaxonales/genética , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/genética , Fenotipo , Adulto Joven
10.
Cells ; 10(3)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809527

RESUMEN

Parkinson's disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world's aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.


Asunto(s)
Encéfalo/patología , Degeneración Nerviosa , Neuronas/patología , Trastornos Parkinsonianos/patología , Animales , Encéfalo/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia , Neuronas/metabolismo , Estrés Oxidativo , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Fenotipo , Factores de Riesgo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Neurosci Lett ; 749: 135723, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33600908

RESUMEN

Multiple system atrophy (MSA) is a rare sporadic, progressive parkinsonism characterised by autonomic dysfunction. A recent genome-wide association study reported an association at the Elongation of Very Long Fatty Acids Protein 7 (ELOVL7) locus with MSA risk. In the current study four independent and unrelated cohorts were assessed, consisting of pathologically confirmed MSA cases, Parkinson's disease (PD) cases, and two unrelated, healthy control groups. All exons of ELOVL7 were sequenced in pathologically confirmed MSA cases; data for PPMI samples and Biobank controls was extracted from whole genome sequence. Coding variants in ELOVL7 were extremely rare, and we observed no significant association of ELOVL7 coding variants with risk of MSA.


Asunto(s)
Elongasas de Ácidos Grasos/genética , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , alfa-Sinucleína/genética
12.
Parkinsonism Relat Disord ; 86: 48-51, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33845304

RESUMEN

INTRODUCTION: Approximately 10% of patients with Parkinson disease (PD) present with early-onset disease (EOPD), defined as diagnosis before 50 years of age. Genetic factors are known to contribute to EOPD, with most commonly observed mutations in PRKN, PINK1, and DJ1 genes. The aim of our study was to analyze the frequency of PRKN, PINK1, and DJ1 mutations in an EOPD series from 4 neighboring European countries: Czech Republic, Germany, Poland, and Ukraine. METHODS: Diagnosis of PD was made based on UK Brain Bank diagnostic criteria in departments experienced in movement disorders (1 from Czech Republic, 1 from Germany, 9 from Poland, and 3 from Ukraine). EOPD was defined as onset at or before 50 years of age. Of the 541 patients recruited to the study, 11 were Czech, 38 German, 476 Polish, and 16 Ukrainian. All cohorts were fully screened with Sanger sequencing for PRKN, PINK1, and DJ1 and multiplex ligation-dependent probe amplification for exon dosage. RESULTS: PRKN homozygous or double heterozygous mutations were identified in 17 patients: 1 Czech (9.1%), 1 German (2.6%), 14 Polish (2.9%), and 1 Ukrainian (6.3%). PINK1 homozygous mutations were only identified in 3 Polish patients (0.6%). There were no homozygous or compound heterozygous DJ1 mutations in analyzed subpopulations. One novel variant in PRKN was identified in the Ukrainian series. CONCLUSION: In the analyzed cohorts, mutations in the genes PRKN, PINK1, and DJ1 are not frequently observed.


Asunto(s)
Enfermedad de Parkinson/genética , Proteína Desglicasa DJ-1/genética , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Estudios de Cohortes , Europa (Continente) , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación
13.
Front Neurol ; 11: 594927, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519679

RESUMEN

Introduction: Nigeria is one of the most populated countries in the world; however, there is a scarcity of studies in patients with age-related neurodegenerative diseases, such as Parkinson disease (PD). The aim of this study was to screen patients with PD including a small cohort of early-onset PD (EOPD) cases from Nigeria for PRKN, PINK1, DJ1, SNCA multiplication, and LRRK2 p.G2019S. Methods: We assembled a cohort of 109 Nigerian patients with PD from the four main Nigerian tribes: Yoruba, Igbo, Edo, and Hausa. Fifteen cases [14 from the Yoruba tribe (93.3%)] had EOPD (defined as age-at-onset <50 years). All patients with EOPD were sequenced for the coding regions of PRKN, PINK1, and DJ1. Exon dosage analysis was performed with a multiplex ligation-dependent probe amplification assay, which also included a SNCA probe and LRRK2 p.G2019S. We screened for LRRK2 p.G2019S in the entire PD cohort using a genotyping assay. The PINK1 p.R501Q functional analysis was conducted. Results: In 15 patients with EOPD, 22 variants were observed [PRKN, 9 (40.9%); PINK1, 10 (45.5%); and DJ1, 3 (13.6%)]. Three (13.6%) rare, nonsynonymous variants were identified, but no homozygous or compound heterozygous carriers were found. No exonic rearrangements were present in the three genes, and no carriers of SNCA genomic multiplications or LRRK2 p.G2019S were identified. The PINK1 p.R501Q functional analysis revealed pathogenic loss of function. Conclusion: More studies on age-related neurodegenerative diseases are needed in sub-Saharan African countries, including Nigeria. Population-specific variation may provide insight into the genes involved in PD in the local population but may also contribute to larger studiesperformed in White and Asian populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA