Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Stroke ; 54(10): 2652-2665, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37694402

RESUMEN

BACKGROUND: Cognitive dysfunction is a frequent stroke sequela, but its pathogenesis and treatment remain unresolved. Involvement of aberrant hippocampal neurogenesis and maladaptive circuitry remodeling has been proposed, but their mechanisms are unknown. Our aim was to evaluate potential underlying molecular/cellular events implicated. METHODS: Stroke was induced by permanent occlusion of the middle cerebral artery occlusion in 2-month-old C57BL/6 male mice. Hippocampal metabolites/neurotransmitters were analyzed longitudinally by in vivo magnetic resonance spectroscopy. Cognitive function was evaluated with the contextual fear conditioning test. Microglia, astrocytes, neuroblasts, interneurons, γ-aminobutyric acid (GABA), and c-fos were analyzed by immunofluorescence. RESULTS: Approximately 50% of mice exhibited progressive post-middle cerebral artery occlusion cognitive impairment. Notably, immature hippocampal neurons in the impaired group displayed more severe aberrant phenotypes than those from the nonimpaired group. Using magnetic resonance spectroscopy, significant bilateral changes in hippocampal metabolites, such as myo-inositol or N-acetylaspartic acid, were found that correlated, respectively, with numbers of glia and immature neuroblasts in the ischemic group. Importantly, some metabolites were specifically altered in the ipsilateral hippocampus suggesting its involvement in aberrant hippocampal neurogenesis and remodeling processes. Specifically, middle cerebral artery occlusion animals with higher hippocampal GABA levels displayed worse cognitive outcome. Implication of GABA in this setting was supported by the amelioration of ischemia-induced memory deficits and aberrant hippocampal neurogenesis after blocking pharmacologically GABAergic neurotransmission, an intervention which was ineffective when neurogenesis was inhibited. These data suggest that GABA exerts its detrimental effect, at least partly, by affecting morphology and integration of newborn neurons into the hippocampal circuits. CONCLUSIONS: Hippocampal GABAergic neurotransmission could be considered a novel diagnostic and therapeutic target for poststroke cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media , Disfunción Cognitiva/etiología , Hipocampo , Neurogénesis
2.
Mar Drugs ; 21(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37888461

RESUMEN

Using the OSMAC (One Strain Many Compounds) approach, the actinobacterium Streptomyces griseorubiginosus, derived from an unidentified cnidarian collected from a reef near Pointe de Bellevue in Réunion Island (France), was subjected to cultivation under diverse conditions. This endeavour yielded the isolation of a repertoire of 23 secondary metabolites (1-23), wherein five compounds were unprecedented as natural products (19-23). Specifically, compounds 19 and 20 showcased novel anthrone backbones, while compound 23 displayed a distinctive tetralone structure. Additionally, compounds 21 and 22 presented an unusual naphtho [2,3-c]furan-4(9H)-one chromophore. Interestingly, the detection of all these novel compounds (19-23) was exclusively achieved when the bacterium was cultured in FA-1 liquid medium supplemented with the epigenetic modifier γ-butyrolactone. The elucidation of the structural features of the newfound compounds was accomplished through a combination of HRESIMS, 1D and 2D NMR spectroscopy, as well as QM-NMR (Quantum Mechanical-Nuclear Magnetic Resonance) methods and by comparison with existing literature. Moreover, the determination of the relative configuration of compound 23 was facilitated by employing the mix-J-DP4 computational approach.


Asunto(s)
Productos Biológicos , Policétidos , Streptomyces , Policétidos/farmacología , Espectroscopía de Resonancia Magnética , Streptomyces/metabolismo , Estructura Molecular
3.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36991888

RESUMEN

Due to the edaphoclimatic conditions in southeast Spain, which are expected to worsen due to climate change, more efficient ways of using water must be found to maintain sustainable agriculture. Due to the current high price of irrigation control systems in southern Europe, 60-80% of soilless crops are still irrigated, based on the experience of the grower or advisor. The hypothesis of this work is that the development of a low-cost, high-performance control system will allow small farmers to improve the efficiency of water use by obtaining better control of soilless crops. The objective of the present study was to design and develop a cost-effective control system for the optimization of soilless crop irrigation after evaluating the three most commonly used irrigation control systems to determine the most efficient. Based on the agronomic results comparing these methods, a prototype of a commercial smart gravimetric tray was developed. The device records the irrigation and drainage volumes and drainage pH and EC. It also offers the possibility of determining the temperature, EC, and humidity of the substrate. This new design is scalable thanks to the use of an implemented data acquisition system called SDB and the development of software in the Codesys programming environment based on function blocks and variable structures. The reduced wiring achieved by the Modbus-RTU communication protocols means the system is cost-effective even with multiple control zones. It is also compatible with any type of fertigation controller through external activation. Its design and features solve the problems in similar systems available on the market at an affordable cost. The idea is to allow farmers to increase their productivity without having to make a large outlay. The impact of this work will make it possible for small-scale farmers to have access to affordable, state-of-the-art technology for soilless irrigation management leading to a considerable improvement in productivity.

4.
Nutr Neurosci ; 25(3): 472-484, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32401697

RESUMEN

OBJECTIVES: Neuroinflammation is a complex inflammatory process in the central nervous system (CNS) where microglia may play a critical role. GPETAFLR is a peptide isolated from Lupinus angustifolius L. protein hydrolysates with functional activity in mononuclear phagocytes. However, it is unknown whether GPETAFLR has neuroprotective effects. METHODS: We analysed the potential anti-neuroinflammatory activity of GPETAFLR by using two different models of neuroinflammation: BV-2 microglial cells and mice with high-fat diet (HFD)-induced obesity. RESULTS: GPETAFLR hampered LPS-induced upregulation of pro-inflammatory and M1 marker genes in BV-2 cells. This effect was accompanied by an unchanged expression of anti-inflammatory IL-10 gene and by an increased expression of M2 marker genes. GPETAFLR also increased the transcriptional activity of M2 marker genes, while the microglia population remained unchanged in number and M1/M2 status in brain of mice with high-fat diet (HFD)-induced obesity. Furthermore, GPETAFLR counteracted HFD-induced downregulation of IL-10 and upregulation of pro-inflammatory markers in the mouse brain, both at gene and protein levels. DISCUSSION: This is the first report describing that a peptide from plant origin robustly restrained the pro-inflammatory activation of microglial cells in cultures and in brain. Our data suggest that GPETAFLR might be instrumental in maintaining CNS homeostasis by inhibiting neuroinflammation.


Asunto(s)
Lupinus , Microglía , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Lupinus/metabolismo , Ratones , Neuroprotección , Péptidos
5.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077225

RESUMEN

Anxiety is the most prevalent psychiatric disorder worldwide, causing a substantial economic burden due to the associated healthcare costs. Given that commercial anxiolytic treatments may cause important side effects and have medical restrictions for prescription and high costs, the search for new natural and safer treatments is gaining attention. Since lupin protein hydrolysate (LPH) has been shown to be safe and exert anti-inflammatory and antioxidant effects, key risk factors for the anxiety process and memory impairment, we evaluated in this study the potential effects of LPH on anxiety and spatial memory in a Western diet (WD)-induced anxiety model in ApoE-/- mice. We showed that 20.86% of the 278 identified LPH peptides have biological activity related to anxiolytic/analgesic effects; the principal motifs found were the following: VPL, PGP, YL, and GQ. Moreover, 14 weeks of intragastrical LPH treatment (100 mg/kg) restored the WD-induced anxiety effects, reestablishing the anxiety levels observed in the standard diet (SD)-fed mice since they spent less time in the anxiety zones of the elevated plus maze (EPM). Furthermore, a significant increase in the number of head dips was recorded in LPH-treated mice, which indicates a greater exploration capacity and less fear due to lower levels of anxiety. Interestingly, the LPH group showed similar thigmotaxis, a well-established indicator of animal anxiety and fear, to the SD group, counteracting the WD effect. This is the first study to show that LPH treatment has anxiolytic effects, pointing to LPH as a potential component of future nutritional therapies in patients with anxiety.


Asunto(s)
Ansiolíticos , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Apolipoproteínas E/genética , Apolipoproteínas E/farmacología , Conducta Animal , Dieta Occidental/efectos adversos , Humanos , Aprendizaje por Laberinto , Ratones , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/uso terapéutico
6.
Mar Drugs ; 17(11)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731428

RESUMEN

Palmaria palmata L. (Palmariaceae), commonly known as "dulse", is a red alga that grows on the northern coasts of the Atlantic and Pacific oceans, and is widely used as source of fiber and protein. Dulse is reported to contain anti-inflammatory and antioxidant compounds, albeit no study has investigated these effects in primary human neutrophils. Implication strategies to diminish neutrophil activation have the potential to prevent pathological states. We evaluated the ability of a phenolic dulse extract (DULEXT) to modulate the lipopolysaccharide (LPS)-mediated activation of primary human neutrophils. Intracellular reactive oxygen species (ROS) were measured by fluorescence analysis and nitric oxide (NO) production using the Griess reaction. Inflammatory enzymes and cytokines were detected by ELISA and RT-qPCR. The results show that DULEXT diminished the neutrophil activation related to the down-regulation of TLR4 mRNA expression, deceased gene expression and the LPS-induced release of the chemoattractant mediator IL-8 and the pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α. ROS, NO, and myeloperoxidase (MPO) were also depressed. The data indicated that DULEXT has the potential to disrupt the activation of human primary neutrophils and the derived inflammatory and prooxidant conditions, and suggest a new role for Palmaria palmata L. in the regulation of the pathogenesis of health disorders in which neutrophils play a key role, including atherosclerosis.


Asunto(s)
Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Extractos Vegetales/farmacología , Rhodophyta/química , Adulto , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Línea Celular , Citocinas/metabolismo , Suplementos Dietéticos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Neutrófilos/metabolismo , Óxido Nítrico/metabolismo
7.
Foods ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998552

RESUMEN

Sacha inchi (Plukenetia volubilis L.) is an under-exploited crop with great potential due to its nutritional and medicinal characteristics. A Sacha inchi protein isolate (SII), obtained from defatted Sacha inchi flour (SIF), was hydrolyzed by Bioprotease LA 660 under specific conditions. The hydrolysates were characterized chemically, and their digestibility and antioxidant capacity were evaluated by in vitro cell-free experiments to select the hydrolysate with major antioxidant activity. Sacha inchi protein hydrolysate at 20 min (SIH20B) was selected, and the anti-inflammatory capacity was evaluated by RT-qPCR and ELISA techniques, using two different doses in monocytes THP-1 stimulated with lipopolysaccharide (LPS). The results obtained showed that the in vitro administration of SIH20B down-regulated the TNF-α gene and reduced the release of this cytokine, whereas the anti-inflammatory cytokines IL-10 and IL-4 were up-regulated in LPS-stimulated monocytes and co-administrated with SIH20B. The peptides contained in SIH20B were identified, and the 20 more relatively abundant peptides with a mass by 1 kDa were subjected to in silico analysis to hypothesize those that could be responsible for the bioactivity reported in the hydrolysate. From the identified peptides, the peptides AAGALKKFL and LGVKFKGGL, among others, are proposed as the most biologically actives. In conclusion, SIH20B is a novel, natural source of high-value-added biopeptides that could be used as an ingredient in formulations of food or nutraceutical compounds.

8.
Br J Pharmacol ; 181(6): 777-798, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37282844

RESUMEN

Growing evidence supports the suggestion that the peripheral immune system plays a role in different pathologies associated with cognitive impairment, such as vascular dementia (VD) or Alzheimer's disease (AD). The aim of this review is to summarize, within the peripheral immune system, the implications of different types of myeloid cells in AD and VD, with a special focus on post-stroke cognitive impairment and dementia (PSCID). We will review the contributions of the myeloid lineage, from peripheral cells (neutrophils, platelets, monocytes and monocyte-derived macrophages) to central nervous system (CNS)-associated cells (perivascular macrophages and microglia). Finally, we will evaluate different potential strategies for pharmacological modulation of pathological processes mediated by myeloid cell subsets, with an emphasis on neutrophils, their interaction with platelets and the process of immunothrombosis that triggers neutrophil-dependent capillary stall and hypoperfusion, as possible effector mechanisms that may pave the way to novel therapeutic avenues to stop dementia, the epidemic of our time. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.


Asunto(s)
Enfermedad de Alzheimer , Demencia Vascular , Humanos , Demencia Vascular/tratamiento farmacológico , Células Mieloides , Monocitos , Microglía
9.
Food Sci Technol Int ; 19(3): 217-23, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23426719

RESUMEN

Chickpea protein isolate was hydrolyzed using Flavourzyme immobilized on glyoxyl-agarose beads by multipoint covalent attachment. This Flavourzyme-glyoxyl derivative, produced after 1 h of immobilization at 4 °C followed by 5.5 h at room temperature, presented approximately 51% of the endoprotease activity of Flavourzyme but was around 700 times more stable than soluble enzyme. Chickpea protein hydrolysates ranging from 1% to 10% degree of hydrolysis were produced and their chemical composition was very close to that of protein isolate used as starting material. Solubility, oil absorption, emulsifying activity and stability, and foaming capacity and stability were determined. All protein hydrolysates showed higher solubility than intact proteins, especially at pHs near isoelectric point of native chickpea proteins. Moreover, all hydrolysates had better functional properties, except emulsifying activity, than the original protein isolate.


Asunto(s)
Cicer/química , Endopeptidasas/metabolismo , Enzimas Inmovilizadas/metabolismo , Glioxilatos/química , Proteínas de Plantas/metabolismo , Sefarosa/química , Endopeptidasas/química , Enzimas Inmovilizadas/química , Concentración de Iones de Hidrógeno , Hidrólisis , Proteínas de Plantas/química
10.
Materials (Basel) ; 16(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37176354

RESUMEN

Research on auxetic metamaterials is important due to their high performance against impact loadings and their usefulness in actuators, among other applications. These metamaterials offer a negative Poisson's ratio at the macro level. However, usual auxetic metamaterials face challenges in (1) grading the effect, (2) coupling and combining auxetic metamaterials with non-auxetic materials due to boundary compatibility, (3) obtaining the same auxetic behavior in all directions in the transverse plane, and (4) adapting the regular geometry to the component design boundary and shape. The goal of this paper is to present a novel, recently patented tunable 3D metamaterial created to reproduce a wide spectrum of 3D auxetic and non-auxetic Poisson's ratios and Young's moduli. This wide range is obtained using the same basic unit cell geometry and boundary connections with neighboring cells, facilitating designs using functionally graded metamaterials as only the connectivity and position of the cell's internal nodes are modified. Based on simple spatial triangularization, the metamaterial is easily scalable and better accommodates spatial curvatures or boundaries by changing the locations of nodes and lengths of bars.

11.
Food Res Int ; 174(Pt 1): 113616, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986471

RESUMEN

Hemp seeds have attracted the interest of the food industry recently, to be employed as functional food, considering their nutritional composition, highlighting the high content and quality of the proteins. In this study, ten hemp protein hydrolysates (HPHs) were obtained by enzymatic hydrolysis with two food-grade proteases from a hemp protein isolate and the inflammatory properties were evaluated in Caco-2 cell line. To this end, the gene expression and the release of proinflammatory and anti-inflammatory cytokines by Caco-2 cells stimulated with bacterial lipopolysaccharide and treated with HPHs at concentrations of 50 and 100 µg/mL were analyzed. The peptides contained in each HPH were identified and those with higher quality of the match in the spectrum were subjected to in silico analyses to determine which peptides were bioactive and contributing to the immunomodulatory activity of the hydrolysates. The results suggest that the immunomodulatory properties of these HPHs could have a beneficial effect at the level of the intestinal epithelium. The HPH20A and HPH60A + 15F exerted high immunomodulatory properties based on the cytokine levels release. The oligopeptides MAEKEGFEWVSF and GLHLPSYTNTPQLVYIVK were proposed as the most active ones. The potential of these peptides as nutraceuticals to prevent or pretreat intestinal inflammation is promising, though requires validation by in vivo assays.


Asunto(s)
Cannabis , Humanos , Cannabis/química , Células CACO-2 , Semillas/química , Péptidos/química , Intestinos
12.
Foods ; 12(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37238820

RESUMEN

In this research, scallops (Argopecten purpuratus) visceral meal (SVM) and defatted meal (SVMD) were analysed for their proximal composition, protein solubility, and amino acid profile. Hydrolysed proteins isolated from the scallop's viscera (SPH) were optimised and characterised using response surface methodology with a Box-Behnken design. The effects of three independent variables were examined: temperature (30-70 °C), time (40-80 min), and enzyme concentration (0.1-0.5 AU/g protein) on the degree of hydrolysis (DH %) as a response variable. The optimised protein hydrolysates were analysed for their proximal composition, yield, DH %, protein solubility, amino acid composition, and molecular profile. This research showed that defatted and isolation protein stages are not necessaries to obtain the hydrolysate protein. The conditions of the optimization process were 57 °C, 62 min and 0.38 AU/g protein. The amino acid composition showed a balanced profile since it conforms to the Food and Agriculture Organisation/World Health Organisation recommendations for healthy nutrition. The predominant amino acids were aspartic acid + asparagine, glutamic acid + Glutamate, Glycine, and Arginine. The protein hydrolysates' yield and DH % were higher than 90% and close to 20%, respectively, with molecular weight between 1-5 kDa. The results indicate that the protein hydrolysates of scallops (Argopecten purpuratus) visceral by product optimised and characterised was suitable a lab-scale. Further research is necessary to study the bioactivity properties with biologic activity of these hydrolysates.

13.
Food Chem ; 426: 136458, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329795

RESUMEN

Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.


Asunto(s)
Diabetes Mellitus , Inhibidores de la Dipeptidil-Peptidasa IV , Lupinus , Humanos , Animales , Ratones , Lupinus/química , Células CACO-2 , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/química , Dipeptidil Peptidasa 4/metabolismo , Glucosa
14.
J Sci Food Agric ; 92(9): 1994-2001, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22246802

RESUMEN

BACKGROUND: Some dietary proteins possess biological properties which make them potential ingredients of functional or health-promoting foods. Many of these properties are attributed to bioactive peptides that can be released by controlled hydrolysis using exogenous proteases. The aim of this work was to test the improvement of hypocholesterolaemic and antioxidant activities of chickpea protein isolate by means of hydrolysis with alcalase and flavourzyme. RESULTS: All hydrolysates tested exhibited better hypocholesterolaemic activity when compared with chickpea protein isolate. The highest cholesterol micellar solubility inhibition (50%) was found after 60 min of treatment with alcalase followed by 30 min of hydrolysis with flavourzyme. To test antioxidant activity of chickpea proteins three methods were used: ß-carotene bleaching method, reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect since antioxidant activity of protein hydrolysates may not be attributed to a single mechanism. Chickpea hydrolysates showed better antioxidant activity in all assays, especially reducing power and DPPH scavenging effect than chickpea protein isolate. CONCLUSION: The results of this study showed the good potential of chickpea protein hydrolysates as bioactive ingredients. The highest bioactive properties could be obtained by selecting the type of proteases and the hydrolysis time.


Asunto(s)
Anticolesterolemiantes/farmacología , Antioxidantes/farmacología , Colesterol/metabolismo , Cicer/química , Proteínas en la Dieta/farmacología , Hidrolisados de Proteína/farmacología , Semillas/química , Compuestos de Bifenilo/metabolismo , Endopeptidasas/metabolismo , Alimentos Funcionales , Micelas , Oxidación-Reducción , Péptidos , Picratos/metabolismo , Proteínas de Plantas/farmacología , Subtilisinas/metabolismo , beta Caroteno/metabolismo
15.
Foods ; 11(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35267256

RESUMEN

Chia (Salvia hispanica L.) seed has high potential in the development of functional food due to its protein content with a special amino acid profile. Among the hematopoietic-derived cells, monocytes are endowed with high plasticity, responsible for their pro- and anti-inflammatory function in M1 and M2 phenotype polarization, respectively. Indeed, monocytes are involved in several oxidative- and inflammatory-associated disorders such as cancer, obesity, and cardiovascular and neurodegenerative diseases. This study was designed to investigate the role of chia protein hydrolysates (CPHs) in primary human monocyte-macrophage plasticity response using biochemical, RT-qPCR, and ELISA assays. Our results showed that CPHs reduce ROS and nitrite output, as pro-inflammatory cytokine secretion, and enhance the expression and release of anti-inflammatory cytokines. In addition, CPHs reverse LPS-associated M1 polarization into M2. These findings open new opportunities for developing nutritional strategies with chia as a dietary source of biopeptides to prevent the development and progression of oxidative- and inflammatory-related diseases.

16.
Food Funct ; 13(7): 4158-4170, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35316320

RESUMEN

Lupin protein hydrolysates (LPHs) are gaining attention in the food and nutraceutical industries due to their several beneficial health effects. Recently, we have shown that LPH treatment reduces liver cholesterol and triglyceride levels in hypercholesterolemic mice. The aim of this study was to elucidate the effects of LPH treatment on the molecular mechanism underlying liver cholesterol metabolism in ApoE-/- mice fed the Western diet. After identifying the composition of the peptide within the LPH mixture and determining its ability to reduce HMGCoAR activity in vitro, its effect on the LDLR and PCSK9 pathways was measured in liver tissue from the same mice. Thus, the LPH reduced the protein levels of HMGCoAR and increased the phosphorylated inactive form of HMGCoAR and the pHMGCoAR/HMGCoAR ratio, which led to the deactivation of de novo cholesterol synthesis. Furthermore, the LPH decreased the protein levels of SREBP2, a key upstream transcription factor involved in the expression of HMGCoAR and LDLR. Consequently, LDLR protein levels decreased in the liver of LPH-treated animals. Interestingly, the LPH also increased the protein levels of pAMPK responsible for HMGCoAR phosphorylation. Furthermore, the LPH controlled the PSCK9 signal pathway by decreasing its transcription factor, the HNF1-α protein. Consequently, lower PSCK9 protein levels were found in the liver of LPH-treated mice. This is the first study elucidating the molecular mechanism at the basis of the hypocholesterolemic effects exerted by the LPH in an in vivo model. All these findings point out LPHs as a future lipid-lowering ingredient to develop new functional foods.


Asunto(s)
Lupinus , Proproteína Convertasa 9 , Animales , Apolipoproteínas E/genética , Dieta Occidental/efectos adversos , Hígado/metabolismo , Lupinus/metabolismo , Ratones , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Hidrolisados de Proteína/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
17.
Work ; 73(s1): S31-S43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36155541

RESUMEN

BACKGROUND: Adopting awkward postures at work has a great impact on productivity and work-related musculoskeletal disorders. Considering anthropometric data in the design of products and workplaces can diminish this impact. The traditional univariate-percentile-approach is one of the most implemented in the anthropometric analysis, even though it has proved limitations in comparison with multivariate-approaches. OBJECTIVE: To develop univariate and multivariate hand models considering four anthropometric dimensions, and to theoretically compare the univariate and multivariate accommodation percentages. METHODS: Univariate percentile models corresponding to the database of real subject nearest-neighbors to the 5th and 95th percentiles were obtained for the male and female population. Two multivariate approaches were implemented on the central 90% of both populations: 2D principal component analysis and archetypal analysis. The accommodation percentage for each family of models was obtained based on the population that simultaneously fit all the anthropometric dimensions. The goodness-of-fit and McNemar's tests were performed to statistically analyze the accommodation percentages. RESULTS: Eight human hand models were obtained via Principal Component Analysis while two, three, four, and eight Archetypal Analysis models (male-population) and two, three, six, and eight Archetypal Analysis models (female-population) were selected after a root-sum-of-squares analysis for k = 1, ...  ,10 archetypes. CONCLUSION: The results showed that the Principal Component Analysis models obtained a higher accommodation level, followed by the Archetypal Analysis and percentile models (male population). In the case of the female population, models obtained by multivariate-Archetypal Analysis (k = 8) obtained a higher accommodation percentage.


Asunto(s)
Postura , Lugar de Trabajo , Masculino , Humanos , Femenino , Antropometría/métodos , Análisis Multivariante
18.
J Agric Food Chem ; 70(27): 8243-8253, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35767743

RESUMEN

We have previously reported the in vitro hypocholesterolemic, anti-inflammatory, and antioxidant effects of Alcalase-generated lupin protein hydrolysate (LPH). Given that lipoprotein deposition, oxidative stress, and inflammation are the main components of atherogenesis, we characterized the LPH composition, in silico identified LPH-peptides with activities related to atherosclerosis, and evaluated the in vivo LPH effects on atherosclerosis risk factors in a mouse model of atherosclerosis. After 15 min of Alcalase hydrolysis, peptides smaller than 8 kDa were obtained, and 259 peptides out of 278 peptides found showed biological activities related to atherosclerosis risk factors. Furthermore, LPH administration for 12 weeks reduced the plasma lipids, as well as the cardiovascular and atherogenic risk indexes. LPH also increased the total antioxidant capacity, decreased endothelial permeability, inflammatory response, and atherogenic markers. Therefore, this study describes for the first time that LPH prevents the early stages of atherosclerosis.


Asunto(s)
Aterosclerosis , Lupinus , Animales , Antioxidantes , Apolipoproteínas E/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/prevención & control , Dieta Occidental , Lupinus/química , Ratones , Péptidos , Hidrolisados de Proteína/farmacología , Subtilisinas
19.
Antioxidants (Basel) ; 10(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922174

RESUMEN

Kiwicha (Amaranthus caudatus) is considered one of the few multipurpose pseudocereals for its potential use not only as a source of nutrients and fiber but also for its bioactive compounds. In recent years, antioxidant peptides are commonly used as functional ingredient of food. Herein, a kiwicha protein isolate (KPI), obtained from kiwicha defatted flour (KDF), was hydrolyzed by Bioprotease LA 660, a food-grade endoprotease, under specific conditions. The resulting kiwicha protein hydrolysates (KPHs) were chemically characterized and their digestibility and antioxidant capacity were evaluated by in vitro cell-free experiments owing to their measure of capacity to sequester DPPH free radical and reducing power. KPHs showed higher digestibility and antioxidant capacity than intact proteins into KPI. Therefore, the results shown in this study indicate that KPHs could serve as an adequate source of antioxidant peptides, representing an effective alternative to the generation of functional food.

20.
Biomolecules ; 11(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34680091

RESUMEN

Agri-food industries generate several by-products, including protein-rich materials currently treated as waste. Lupine species could be a sustainable alternative source of protein compared to other crops such as soybean or chickpea. Protein hydrolysates contain bioactive peptides that may act positively in disease prevention or treatment. Inflammatory responses and oxidative stress underlie many chronic pathologies and natural treatment approaches have gained attention as an alternative to synthetic pharmaceuticals. Recent studies have shown that lupin protein hydrolysates (LPHs) could be an important source of biopeptides, especially since they demonstrate anti-inflammatory properties. However, due to their possible degradation by digestive and brush-border enzymes, it is not clear whether these peptides can resist intestinal absorption and reach the bloodstream, where they may exert their biological effects. In this work, the in vitro cellular uptake/transport and the anti-inflammatory and antioxidant properties of LPH were investigated in a co-culture system with intestinal epithelial Caco-2 cells and THP-1-derived macrophages. The results indicate that the LPH crosses the human intestinal Caco-2 monolayer and exerts anti-inflammatory activity in macrophages located in the basement area by decreasing mRNA levels and the production of pro-inflammatory cytokines. A remarkable reduction in nitric oxide and ROS in the cell-based system by peptides from LPH was also demonstrated. Our preliminary results point to underexplored protein hydrolysates from food production industries as a novel, natural source of high-value-added biopeptides.


Asunto(s)
Antiinflamatorios/química , Lupinus/química , Hidrolisados de Proteína/química , Residuos Sólidos , Agricultura , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Células CACO-2 , Humanos , Estrés Oxidativo , Hidrolisados de Proteína/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA