Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 143: 105020, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32682953

RESUMEN

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions, many of which are perturbed in Alzheimer's disease. Moreover, damage to ER-mitochondria signaling is seen in cell and transgenic models of Alzheimer's disease. However, as yet there is little evidence that ER-mitochondria signaling is altered in human Alzheimer's disease brains. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and "tether" regions of ER to the mitochondrial surface. The VAPB-PTPIP51 tethers are now known to regulate a number of ER-mitochondria signaling functions including delivery of Ca2+from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and Alzheimer's disease brains. Quantification of ER-mitochondria signaling proteins by immunoblotting revealed loss of VAPB and PTPIP51 in cortex but not cerebellum at end-stage Alzheimer's disease. Proximity ligation assays were used to quantify the VAPB-PTPIP51 interaction in temporal cortex pyramidal neurons and cerebellar Purkinje cell neurons in control, Braak stage III-IV (early/mid-dementia) and Braak stage VI (severe dementia) cases. Pyramidal neurons degenerate in Alzheimer's disease whereas Purkinje cells are less affected. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in Braak stage III-IV pyramidal but not Purkinje cell neurons. Thus, we identify a new pathogenic event in post-mortem Alzheimer's disease brains. The implications of our findings for Alzheimer's disease mechanisms are discussed.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Lóbulo Temporal/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Autopsia , Retículo Endoplásmico/patología , Femenino , Humanos , Masculino , Mitocondrias/patología , Células Piramidales/metabolismo , Células Piramidales/patología , Lóbulo Temporal/patología
2.
Acta Neuropathol ; 134(1): 129-149, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28337542

RESUMEN

α-Synuclein is strongly linked to Parkinson's disease but the molecular targets for its toxicity are not fully clear. However, many neuronal functions damaged in Parkinson's disease are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling involves close physical associations between the two organelles that are mediated by binding of the integral ER protein vesicle-associated membrane protein-associated protein B (VAPB) to the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). VAPB and PTPIP51 thus act as a scaffold to tether the two organelles. Here we show that α-synuclein binds to VAPB and that overexpression of wild-type and familial Parkinson's disease mutant α-synuclein disrupt the VAPB-PTPIP51 tethers to loosen ER-mitochondria associations. This disruption to the VAPB-PTPIP51 tethers is also seen in neurons derived from induced pluripotent stem cells from familial Parkinson's disease patients harbouring pathogenic triplication of the α-synuclein gene. We also show that the α-synuclein induced loosening of ER-mitochondria contacts is accompanied by disruption to Ca2+ exchange between the two organelles and mitochondrial ATP production. Such disruptions are likely to be particularly damaging to neurons that are heavily dependent on correct Ca2+ signaling and ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Homeostasis/fisiología , Mitocondrias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cationes Bivalentes/metabolismo , Línea Celular Tumoral , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Tirosina Fosfatasas/metabolismo , Ratas Sprague-Dawley , alfa-Sinucleína/genética
3.
Infection ; 44(4): 513-20, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26861246

RESUMEN

BACKGROUND: Individuals with cystic fibrosis (CF) receive antibiotics continuously throughout their entire life which leads to drug resistant microbial lung infections which are difficult to treat. Nitric oxide (NO) gas possesses antimicrobial activity against a wide variety of microorganisms in vitro, in vivo in animal models and a phase I study in healthy adults showed administration of intermittent 160 ppm NO to be safe. METHODS: We assessed feasibility and safety of inhaled NO in eight CF patients who received 160 ppm NO for 30 min, three times daily for 2 periods of 5 days. RESULTS: The NO treatment was safe and in none of the patients were serious drug-related adverse events observed which caused termination of the study. The intention-to-treat analysis revealed a significant mean reduction of the colony forming units of all bacteria and all fungi, while mean forced expiratory volume 1 s % predicted (FEV1) relative to baseline increased 17.3 ± 8.9 % (P = 0.012). CONCLUSIONS: NO treatment may improve the therapy of chronic microbial lung infections in CF patients, particularly concerning pathogens with intrinsic or acquired resistance to antibiotics.


Asunto(s)
Antiinfecciosos/uso terapéutico , Fibrosis Quística/complicaciones , Óxido Nítrico/uso terapéutico , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Adulto , Antiinfecciosos/administración & dosificación , Antiinfecciosos/efectos adversos , Farmacorresistencia Bacteriana , Farmacorresistencia Fúngica , Estudios de Factibilidad , Femenino , Volumen Espiratorio Forzado , Humanos , Masculino , Óxido Nítrico/administración & dosificación , Óxido Nítrico/efectos adversos , Infecciones del Sistema Respiratorio/microbiología
4.
Biochem J ; 470(3): 303-17, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26188042

RESUMEN

Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-ß peptide (Aß) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser(610) and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser(610) phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser(610) phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser(610) by SGK1 regulates binding of FE65 to APP, APP turnover and processing.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/genética , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química
5.
Hum Mol Genet ; 22(22): 4646-52, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23825109

RESUMEN

Disruption to axonal transport is an early pathological feature in Alzheimer's disease. The amyloid precursor protein (APP) is a key axonal transport cargo in Alzheimer's disease since perturbation of its transport increases APP processing and production of amyloid-ß peptide (Aß) that is deposited in the brains of Alzheimer's disease patients. APP is transported anterogradely through axons on kinesin-1 motors. One favoured route for attachment of APP to kinesin-1 involves the scaffolding protein c-Jun N-terminal kinase-interacting protein-1 (JIP1), which has been shown to bind both APP and kinesin-1 light chain (KLC). However, direct experimental evidence to support a role of JIP1 in APP transport is lacking. Notably, the effect of loss of JIP1 on movement of APP through axons of living neurons, and the impact of such loss on APP processing and Aß production has not been reported. To address these issues, we monitored how siRNA mediated loss of JIP1 influenced transport of enhanced green fluorescent protein (EGFP)-tagged APP through axons and production of endogenous Aß in living neurons. Surprisingly, we found that knockdown of JIP1 did not affect either APP transport or Aß production. These results have important implications for our understanding of APP trafficking in Alzheimer's disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal , Neuronas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Animales , Axones/metabolismo , Encéfalo/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Persona de Mediana Edad , Ratas
6.
Hum Mol Genet ; 22(13): 2676-88, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23474818

RESUMEN

Mutations in the gene encoding Fused in Sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. FUS is a predominantly nuclear DNA- and RNA-binding protein that is involved in RNA processing. Large FUS-immunoreactive inclusions fill the perikaryon of surviving motor neurons of ALS patients carrying mutations at post-mortem. This sequestration of FUS is predicted to disrupt RNA processing and initiate neurodegeneration. Here, we demonstrate that C-terminal ALS mutations disrupt the nuclear localizing signal (NLS) of FUS resulting in cytoplasmic accumulation in transfected cells and patient fibroblasts. FUS mislocalization is rescued by the addition of the wild-type FUS NLS to mutant proteins. We also show that oxidative stress recruits mutant FUS to cytoplasmic stress granules where it is able to bind and sequester wild-type FUS. While FUS interacts with itself directly by protein-protein interaction, the recruitment of FUS to stress granules and interaction with PABP are RNA dependent. These findings support a two-hit hypothesis, whereby cytoplasmic mislocalization of FUS protein, followed by cellular stress, contributes to the formation of cytoplasmic aggregates that may sequester FUS, disrupt RNA processing and initiate motor neuron degeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Nucléolo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Estrés Fisiológico , Sustitución de Aminoácidos , Animales , Línea Celular , Humanos , Neuronas Motoras/metabolismo , Mutación , Señales de Localización Nuclear , Unión Proteica , Transporte de Proteínas , Ratas
7.
FASEB J ; 28(1): 337-49, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24056087

RESUMEN

FE65 is an adaptor protein that binds to the amyloid precursor protein (APP). As such, FE65 has been implicated in the pathogenesis of Alzheimer's disease. In addition, evidence suggests that FE65 is involved in brain development. It is generally believed that FE65 participates in these processes by recruiting various interacting partners to form functional complexes. Here, we show that via its first phosphotyrosine binding (PTB) domain, FE65 binds to the small GTPase ADP-ribosylation factor 6 (ARF6). FE65 preferentially binds to ARF6-GDP, and they colocalize in neuronal growth cones. Interestingly, FE65 stimulates the activation of both ARF6 and its downstream GTPase Rac1, a regulator of actin dynamics, and functions in growth cones to stimulate neurite outgrowth. We show that transfection of FE65 and/or ARF6 promotes whereas small interfering RNA knockdown of FE65 or ARF6 inhibits neurite outgrowth in cultured neurons as compared to the mock-transfected control cells. Moreover, knockdown of ARF6 attenuates FE65 stimulation of neurite outgrowth and defective neurite outgrowth seen in FE65-deficient neurons is partially corrected by ARF6 overexpression. Notably, the stimulatory effect of FE65 and ARF6 on neurite outgrowth is abrogated either by dominant-negative Rac1 or knockdown of Rac1. Thus, we identify FE65 as a novel regulator of neurite outgrowth via controlling ARF6-Rac1 signaling.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Proteínas Nucleares/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Células CHO , Células Cultivadas , Cricetulus , Inmunoprecipitación , Unión Proteica , Ratas , Técnicas del Sistema de Dos Híbridos
8.
Hum Mol Genet ; 21(13): 2845-54, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22434822

RESUMEN

Understanding the mechanisms that control processing of the amyloid precursor protein (APP) to produce amyloid-ß (Aß) peptide represents a key area of Alzheimer's disease research. Here, we show that siRNA-mediated loss of calsyntenin-1 in cultured neurons alters APP processing to increase production of Aß. We also show that calsyntenin-1 is reduced in Alzheimer's disease brains and that the extent of this reduction correlates with increased Aß levels. Calsyntenin-1 is a ligand for kinesin-1 light chains and APP is transported through axons on kinesin-1 molecular motors. Defects in axonal transport are an early pathological feature in Alzheimer's disease and defective APP transport is known to increase Aß production. We show that calsyntenin-1 and APP are co-transported through axons and that siRNA-induced loss of calsyntenin-1 markedly disrupts axonal transport of APP. Thus, perturbation to axonal transport of APP on calsyntenin-1 containing carriers induces alterations to APP processing that increase production of Aß. Together, our findings suggest that disruption of calsyntenin-1-associated axonal transport of APP is a pathogenic mechanism in Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/biosíntesis , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal , Axones/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas ADAM , Proteína ADAM10 , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Proteínas de Unión al Calcio/genética , Células Cultivadas , Proteínas Fluorescentes Verdes/metabolismo , Cinesinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Presenilina-1/metabolismo , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño , Ratas
9.
Hum Mol Genet ; 21(9): 1979-88, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22258555

RESUMEN

A proline-to-serine substitution at position 56 in the gene encoding vesicle-associated membrane protein-associated protein B (VAPB; VAPBP56S) causes some dominantly inherited familial forms of motor neuron disease, including amyotrophic lateral sclerosis (ALS) type-8. Here, we show that expression of ALS mutant VAPBP56S but not wild-type VAPB in neurons selectively disrupts anterograde axonal transport of mitochondria. VAPBP56S-induced disruption of mitochondrial transport involved reductions in the frequency, velocity and persistence of anterograde mitochondrial movement. Anterograde axonal transport of mitochondria is mediated by the microtubule-based molecular motor kinesin-1. Attachment of kinesin-1 to mitochondria involves the outer mitochondrial membrane protein mitochondrial Rho GTPase-1 (Miro1) which acts as a sensor for cytosolic calcium levels ([Ca(2+)]c); elevated [Ca(2+)]c disrupts mitochondrial transport via an effect on Miro1. To gain insight into the mechanisms underlying the VAPBP56S effect on mitochondrial transport, we monitored [Ca(2+)]c levels in VAPBP56S-expressing neurons. Expression of VAPBP56S but not VAPB increased resting [Ca(2+)]c and this was associated with a reduction in the amounts of tubulin but not kinesin-1 that were associated with Miro1. Moreover, expression of a Ca(2+) insensitive mutant of Miro1 rescued defective mitochondrial axonal transport and restored the amounts of tubulin associated with the Miro1/kinesin-1 complex to normal in VAPBP56S-expressing cells. Our results suggest that ALS mutant VAPBP56S perturbs anterograde mitochondrial axonal transport by disrupting Ca(2+) homeostasis and effecting the Miro1/kinesin-1 interaction with tubulin.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Transporte Axonal/genética , Transporte Axonal/fisiología , Calcio/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neuronas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Células HEK293 , Homeostasis , Humanos , Cinesinas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Movimiento , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagen de Lapso de Tiempo , Transfección , Tubulina (Proteína)/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
10.
Hum Mol Genet ; 21(6): 1299-311, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22131369

RESUMEN

A proline to serine substitution at position 56 in the gene encoding vesicle-associated membrane protein-associated protein B (VAPB) causes some dominantly inherited familial forms of motor neuron disease including amyotrophic lateral sclerosis (ALS) type-8. VAPB is an integral endoplasmic reticulum (ER) protein whose amino-terminus projects into the cytosol. Overexpression of ALS mutant VAPBP56S disrupts ER structure but the mechanisms by which it induces disease are not properly understood. Here we show that VAPB interacts with the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). ER and mitochondria are both stores for intracellular calcium (Ca(2+)) and Ca(2+) exchange between these organelles occurs at regions of ER that are closely apposed to mitochondria. These are termed mitochondria-associated membranes (MAM). We demonstrate that VAPB is a MAM protein and that loss of either VAPB or PTPIP51 perturbs uptake of Ca(2+) by mitochondria following release from ER stores. Finally, we demonstrate that VAPBP56S has altered binding to PTPIP51 and increases Ca(2+) uptake by mitochondria following release from ER stores. Damage to ER, mitochondria and Ca(2+) homeostasis are all seen in ALS and we discuss the implications of our findings in this context.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Calcio/metabolismo , Homeostasis/fisiología , Proteínas Mitocondriales/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Western Blotting , Células Cultivadas , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Proteínas Tirosina Fosfatasas/genética , Conejos , Ratas , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/inmunología
11.
Commun Biol ; 7(1): 57, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191649

RESUMEN

The lemur family of protein kinases has gained much interest in recent years as they are involved in a variety of cellular processes including regulation of axonal transport and endosomal trafficking, modulation of synaptic functions, memory and learning, and they are centrally placed in several intracellular signalling pathways. Numerous studies have also implicated role of the lemur kinases in the development and progression of a wide range of cancers, cystic fibrosis, and neurodegenerative diseases. However, parallel discoveries and inaccurate prediction of their kinase activity have resulted in a confusing and misleading nomenclature of these proteins. Herein, a group of international scientists with expertise in lemur family of protein kinases set forth a novel nomenclature to rectify this problem and ultimately help the scientific community by providing consistent information about these molecules.


Asunto(s)
Fibrosis Quística , Lemur , Animales , Proteínas Quinasas , Fosforilación , Transporte Axonal
12.
Acta Neuropathol Commun ; 12(1): 32, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395965

RESUMEN

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are clinically linked major neurodegenerative diseases. Notably, TAR DNA-binding protein-43 (TDP43) accumulations are hallmark pathologies of FTD/ALS and mutations in the gene encoding TDP43 cause familial FTD/ALS. There are no cures for FTD/ALS. FTD/ALS display damage to a broad range of physiological functions, many of which are regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by the VAPB-PTPIP51 tethering proteins that serve to recruit regions of ER to the mitochondrial surface so as to facilitate inter-organelle communications. Several studies have now shown that disrupted ER-mitochondria signaling including breaking of the VAPB-PTPIP51 tethers are features of FTD/ALS and that for TDP43 and other familial genetic FTD/ALS insults, this involves activation of glycogen kinase-3ß (GSK3ß). Such findings have prompted suggestions that correcting damage to ER-mitochondria signaling and the VAPB-PTPIP51 interaction may be broadly therapeutic. Here we provide evidence to support this notion. We show that overexpression of VAPB or PTPIP51 to enhance ER-mitochondria signaling corrects mutant TDP43 induced damage to inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ to mitochondria which is a primary function of the VAPB-PTPIP51 tethers, and to synaptic function. Moreover, we show that ursodeoxycholic acid (UDCA), an FDA approved drug linked to FTD/ALS and other neurodegenerative diseases therapy and whose precise therapeutic target is unclear, corrects TDP43 linked damage to the VAPB-PTPIP51 interaction. We also show that this effect involves inhibition of TDP43 mediated activation of GSK3ß. Thus, correcting damage to the VAPB-PTPIP51 tethers may have therapeutic value for FTD/ALS and other age-related neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Proteínas de Transporte Vesicular , Humanos , Esclerosis Amiotrófica Lateral/patología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Sinapsis/patología , Proteinopatías TDP-43/metabolismo , Proteínas de Transporte Vesicular/genética
13.
J Cell Sci ; 124(Pt 7): 1032-42, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21385839

RESUMEN

Kinesin light chain 1 (KLC1) binds to the intracellular cytoplasmic domain of the type-1 membrane-spanning protein calsyntenin-1 (also known as alcadein-α) to mediate transport of a subset of vesicles. Here, we identify serine 460 in KLC1 (KLC1ser460) as a phosphorylation site and show that mutation of KLC1ser460 influences the binding of KLC1 to calsyntenin-1. Mutation of KLC1ser460 to an alanine residue, to preclude phosphorylation, increased the binding of calsyntenin-1, whereas mutation to an aspartate residue, to mimic permanent phosphorylation, reduced the binding. Mutation of KLC1ser460 did not affect the interaction of KLC1 with four other known binding partners: huntingtin-associated protein 1 isoform A (HAP1A), collapsin response mediator protein-2 (CRMP2), c-Jun N-terminal kinase-interacting protein-1 (JIP1) and kinase-D-interacting substrate of 220 kDa (Kidins220). KLC1ser460 is a predicted mitogen-activated protein kinase (MAPK) target site, and we show that extracellular-signal-regulated kinase (ERK) phosphorylates this residue in vitro. We also demonstrate that inhibition of ERK promotes binding of calsyntenin-1 to KLC1. Finally, we show that expression of the KLC1ser460 mutant proteins influences calsyntenin-1 distribution and transport in cultured cells. Thus, phosphorylation of KLC1ser460 represents a mechanism for selectively regulating the binding and trafficking of calsyntenin-1.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Células CHO , Proteínas de Unión al Calcio/genética , Línea Celular , Cricetinae , Cricetulus , Humanos , Cinesinas , Proteínas Asociadas a Microtúbulos/genética , Fosforilación , Unión Proteica , Transporte de Proteínas
14.
Acta Neuropathol ; 125(2): 273-88, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22961620

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are relentlessly progressive neurodegenerative disorders with overlapping clinical, genetic and pathological features. Cytoplasmic inclusions of fused in sarcoma (FUS) are the hallmark of several forms of FTLD and ALS patients with mutations in the FUS gene. FUS is a multifunctional, predominantly nuclear, DNA and RNA binding protein. Here, we report that transgenic mice overexpressing wild-type human FUS develop an aggressive phenotype with an early onset tremor followed by progressive hind limb paralysis and death by 12 weeks in homozygous animals. Large motor neurons were lost from the spinal cord accompanied by neurophysiological evidence of denervation and focal muscle atrophy. Surviving motor neurons in the spinal cord had greatly increased cytoplasmic expression of FUS, with globular and skein-like FUS-positive and ubiquitin-negative inclusions associated with astroglial and microglial reactivity. Cytoplasmic FUS inclusions were also detected in the brain of transgenic mice without apparent neuronal loss and little astroglial or microglial activation. Hemizygous FUS overexpressing mice showed no evidence of a motor phenotype or pathology. These findings recapitulate several pathological features seen in human ALS and FTLD patients, and suggest that overexpression of wild-type FUS in vulnerable neurons may be one of the root causes of disease. Furthermore, these mice will provide a new model to study disease mechanism, and test therapies.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/patología , Proteína FUS de Unión a ARN/fisiología , Animales , Western Blotting , Supervivencia Celular , Citoplasma/metabolismo , Dosificación de Gen , Regulación de la Expresión Génica/genética , Humanos , Inmunohistoquímica , Cuerpos de Inclusión/patología , Contracción Isométrica/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/fisiología , Fibras Musculares Esqueléticas/fisiología , Parálisis/genética , Parálisis/patología , Proteína FUS de Unión a ARN/genética , Médula Espinal/patología
15.
J Neurochem ; 121(3): 343-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22220831

RESUMEN

Cyclin-dependent kinase-5 (cdk5)/p35 and protein phosphatase-1 (PP1) are two major enzymes that control a variety of physiological processes within the nervous system including neuronal differentiation, synaptic plasticity and axonal transport. Defective cdk5/p35 and PP1 function are also implicated in several major human neurodegenerative diseases. Cdk5/p35 and the catalytic subunit of PP1 (PP1C) both bind to the brain-enriched, serine-threonine kinase lemur tyrosine kinase-2 (LMTK2). Moreover, LMTK2 phosphorylates PP1C on threonine-320 (PP1Cthr³²°) to inhibit its activity. Here, we demonstrate that LMTK2 is phosphorylated on serine-1418 (LMTK2ser¹4¹8) by cdk5/p35 and present evidence that this regulates its ability to phosphorylate PP1Cthr³²°. We thus describe a new signalling pathway within the nervous system that links cdk5/p35 with PP1C and which has implications for a number of neuronal functions and neuronal dysfunction.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Lemur/fisiología , Proteína Fosfatasa 1/metabolismo , TYK2 Quinasa/metabolismo , Animales , Western Blotting , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos , Células HeLa , Humanos , Inmunoprecipitación , Espectrometría de Masas , Fosforilación , Plásmidos/genética , Transfección
16.
Biochem J ; 436(3): 631-9, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21486224

RESUMEN

Altered production of Aß (amyloid-ß peptide), derived from the proteolytic cleavage of APP (amyloid precursor protein), is believed to be central to the pathogenesis of AD (Alzheimer's disease). Accumulating evidence reveals that APPc (APP C-terminal domain)-interacting proteins can influence APP processing. There is also evidence to suggest that APPc-interacting proteins work co-operatively and competitively to maintain normal APP functions and processing. Hence, identification of the full complement of APPc-interacting proteins is an important step for improving our understanding of APP processing. Using the yeast two-hybrid system, in the present study we identified GULP1 (engulfment adaptor protein 1) as a novel APPc-interacting protein. We found that the GULP1-APP interaction is mediated by the NPTY motif of APP and the GULP1 PTB (phosphotyrosine-binding) domain. Confocal microscopy revealed that a proportion of APP and GULP1 co-localized in neurons. In an APP-GAL4 reporter assay, we demonstrated that GULP1 altered the processing of APP. Moreover, overexpression of GULP1 enhanced the generation of APP CTFs (C-terminal fragments) and Aß, whereas knockdown of GULP1 suppressed APP CTFs and Aß production. The results of the present study reveal that GULP1 is a novel APP/APPc-interacting protein that influences APP processing and Aß production.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células CHO , Cricetinae , Cricetulus , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Neuronas/metabolismo , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos
17.
Polymers (Basel) ; 14(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458351

RESUMEN

A broad-spectrum antimicrobial respiration apparatus designed to fight bacteria, viruses, fungi, and other biological agents is critical in halting the current pandemic's trajectory and containing future outbreaks. We applied a simple and effective electrodeposition method for metal (copper, silver, and zinc) coating the surface of halloysite nanotubes (HNTs). These nanoparticles are known to possess potent antiviral and antimicrobial properties. Metal-coated HNTs (mHNTs) were then added to polylactic acid (PLA) and extruded to form an mHNT/PLA 3D composite printer filament. Our composite 3D printer filament was then used to fabricate an N95-style mask with an interchangeable/replaceable filter with surfaces designed to inactivate a virus and kill bacteria on contact, thus reducing deadly infections. The filter, made of a multilayered antimicrobial/mHNT blow spun polymer and fabric, is disposable, while the mask can be sanitized and reused. We used several in vitro means of assessing critical clinical features and assessed the bacterial growth inhibition against commonly encountered bacterial strains. These tests demonstrated the capability of our antimicrobial filament to fabricate N95 masks and filters that possessed antibacterial capabilities against both Gram-negative and Gram-positive bacteria.

18.
Front Cell Dev Biol ; 10: 915931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693938

RESUMEN

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two major neurodegenerative diseases. FTD is the second most common cause of dementia and ALS is the most common form of motor neuron disease. These diseases are now known to be linked. There are no cures or effective treatments for FTD or ALS and so new targets for therapeutic intervention are required but this is hampered by the large number of physiological processes that are damaged in FTD/ALS. Many of these damaged functions are now known to be regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by "tethering" proteins that serve to recruit ER to mitochondria. One tether strongly associated with FTD/ALS involves an interaction between the ER protein VAPB and the mitochondrial protein PTPIP51. Recent studies have shown that ER-mitochondria signaling is damaged in FTD/ALS and that this involves breaking of the VAPB-PTPIP51 tethers. Correcting disrupted tethering may therefore correct many other downstream damaged features of FTD/ALS. Here, we review progress on this topic with particular emphasis on targeting of the VAPB-PTPIP51 tethers as a new drug target.

19.
Front Cell Dev Biol ; 10: 950767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051435

RESUMEN

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates many neuronal functions that are perturbed in amyotrophic lateral sclerosis (ALS) and perturbation to ER-mitochondria signaling is seen in cell and transgenic models of ALS. However, there is currently little evidence that ER-mitochondria signaling is altered in human ALS. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and "tether" regions of ER to the mitochondrial surface. The VAPB-PTPI51 tethers are now known to regulate a number of ER-mitochondria signaling functions. These include delivery of Ca2+ from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and ALS spinal cords. We show that VAPB protein levels are reduced in ALS. Proximity ligation assays were then used to quantify the VAPB-PTPIP51 interaction in spinal cord motor neurons in control and ALS cases. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in ALS. Thus, we identify a new pathogenic event in post-mortem ALS.

20.
Front Cell Dev Biol ; 10: 920947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120587

RESUMEN

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of fundamental physiological processes. This signaling involves close physical contacts between the two organelles that are mediated by the VAPB-PTPIP51 ″tethering" proteins. The VAPB-PTPIP51 tethers facilitate inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ from ER to mitochondria. Damage to the tethers is seen in Alzheimer's disease, Parkinson's disease and frontotemporal dementia with related amyotrophic lateral sclerosis (FTD/ALS). Understanding the mechanisms that regulate the VAPB-PTPIP51 interaction thus represents an important area of research. Recent studies suggest that an FFAT motif in PTPIP51 is key to its binding to VAPB but this work relies on in vitro studies with short peptides. Cellular studies to support this notion with full-length proteins are lacking. Here we address this issue. Immunoprecipitation assays from transfected cells revealed that deletion of the PTPIP51 FFAT motif has little effect on VAPB binding. However, mutation and deletion of a nearby coiled-coil domain markedly affect this binding. Using electron microscopy, we then show that deletion of the coiled-coil domain but not the FFAT motif abrogates the effect of PTPIP51 on ER-mitochondria contacts. Finally, we show that deletion of the coiled-coil domain but not the FFAT motif abrogates the effect of PTPIP51 on the IP3 receptor-mediated delivery of Ca2+ to mitochondria. Thus, the coiled-coil domain is essential for PTPIP51 ER-mitochondria signaling functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA