RESUMEN
BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.
Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Células Madre Pluripotentes Inducidas , Humanos , Ratas , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Microtomografía por Rayos X , Células Madre Pluripotentes Inducidas/metabolismo , Hipertensión/complicaciones , Hipertensión/genética , Miocitos Cardíacos/metabolismo , Cardiomegalia , ARNRESUMEN
Electrical activity and intracellular Ca2+ transients are key features of cardiomyocytes. They can be measured using organic voltage- and Ca2+-sensitive dyes but their photostability and phototoxicity mean they are unsuitable for long-term measurements. Here, we investigated whether genetically encoded voltage and Ca2+ indicators (GEVIs and GECIs) delivered as modified mRNA (modRNA) into human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be accurate alternatives allowing measurements over long periods. These indicators were detected in hiPSC-CMs for up to 7 days after transfection and did not affect responses to proarrhythmic compounds. Furthermore, using the GEVI ASAP2f we observed action potential prolongation in long QT syndrome models, while the GECI jRCaMP1b facilitated the repeated evaluation of Ca2+ handling responses for various tyrosine kinase inhibitors. This study demonstrated that modRNAs encoding optogenetic constructs report cardiac physiology in hiPSC-CMs without toxicity or the need for stable integration, illustrating their value as alternatives to organic dyes or other gene delivery methods for expressing transgenes.
Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de Acción/fisiología , Calcio , Colorantes , Humanos , Miocitos Cardíacos , Optogenética , ARN Mensajero/genéticaRESUMEN
The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the ß1- and ß2-adrenergic receptors (ß1/2-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of ß-ARs in adult CMs.
Asunto(s)
Células Madre Pluripotentes Inducidas , Adulto , Diferenciación Celular/genética , Membrana Celular , Células Cultivadas , Humanos , Miocitos Cardíacos/metabolismo , ARN Mensajero/metabolismo , Receptores Adrenérgicos beta/metabolismo , Espectrometría de FluorescenciaRESUMEN
ATAD2 is an ATPase that is overexpressed in a variety of cancers and associated with a poor patient prognosis. This protein has been suggested to function as a cofactor for a range of transcription factors, including the proto-oncogene MYC and the androgen receptor. ATAD2 comprises an ATPase domain, implicated in chromatin remodelling, and a bromodomain which allows it to interact with acetylated histone tails. Dissection of the functional roles of these two domains would benefit from the availability of selective, cell-permeable pharmacological probes. An in silico evaluation of the 3D structures of various bromodomains suggested that developing small molecule ligands for the bromodomain of ATAD2 is likely to be challenging, although recent reports have shown that ATAD2 bromodomain ligands can be identified. We report a structure-guided fragment-based approach to identify lead compounds for ATAD2 bromodomain inhibitor development. Our findings indicate that the ATAD2 bromodomain can accommodate fragment hits (Mr < 200) that yield productive structure-activity relationships, and structure-guided design enabled the introduction of selectivity over BRD4.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Diseño de Fármacos , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas de Ciclo Celular , Diseño Asistido por Computadora , Proteínas de Unión al ADN/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Nucleares/química , Unión Proteica , Dominios Proteicos/efectos de los fármacos , Proto-Oncogenes Mas , Factores de Transcripción/químicaRESUMEN
Regioselective sulfamoylation of primary hydroxyl groups enabled a 5-step synthesis (overall yield 17%) of the first reported small molecule inhibitor of sulfatase-1 and 2, ((2S,3R,4R,5S,6R)-4,5-dihydroxy-2-methoxy-6-((sulfamoyloxy)methyl)tetrahydro-2H-pyran-3-yl)sulfamic acid, which obviated the use of hydroxyl protecting groups and is a marked improvement on the reported 9-step synthesis (overall yield 9%) employing hazardous trifluoromethylsulfonyl azide. The sulfamoylation methodology was used to prepare a range of derivatives of 1, and inhibition data was generated for Sulf-2, ARSA and ARSB.
Asunto(s)
Frío , Inhibidores Enzimáticos/síntesis química , Sulfatasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , EstereoisomerismoRESUMEN
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease.
Asunto(s)
Evolución Molecular , Miocitos Cardíacos , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Animales , Humanos , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/genética , Miocitos Cardíacos/metabolismo , Especificidad de la Especie , Transcriptoma , Perfilación de la Expresión Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Primates/genética , Células CultivadasRESUMEN
Expansion of the glutamine tract (poly-Q) in the protein huntingtin (HTT) causes the neurodegenerative disorder Huntington's disease (HD). Emerging evidence suggests that mutant HTT (mHTT) disrupts brain development. To gain mechanistic insights into the neurodevelopmental impact of human mHTT, we engineered male induced pluripotent stem cells to introduce a biallelic or monoallelic mutant 70Q expansion or to remove the poly-Q tract of HTT. The introduction of a 70Q mutation caused aberrant development of cerebral organoids with loss of neural progenitor organization. The early neurodevelopmental signature of mHTT highlighted the dysregulation of the protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), a transcription factor involved in mitochondrial integrated stress response. CHCHD2 repression was associated with abnormal mitochondrial morpho-dynamics that was reverted upon overexpression of CHCHD2. Removing the poly-Q tract from HTT normalized CHCHD2 levels and corrected key mitochondrial defects. Hence, mHTT-mediated disruption of human neurodevelopment is paralleled by aberrant neurometabolic programming mediated by dysregulation of CHCHD2, which could then serve as an early interventional target for HD.
Asunto(s)
Encéfalo , Proteínas de Unión al ADN , Proteína Huntingtina , Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , Mitocondrias , Proteínas Mitocondriales , Organoides , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Organoides/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Mitocondrias/metabolismo , Mutación , Dinámicas Mitocondriales/genéticaRESUMEN
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an abnormal length of CAG repeats in the gene HTT, leading to an elongated poly-glutamine (poly-Q) sequence in huntingtin (HTT). We used non-integrative Sendai virus to reprogram fibroblasts from a patient with juvenile onset HD to induced pluripotent stem cells (iPSCs). Reprogrammed iPSCs expressed pluripotency-associated markers, exhibited a normal karyotype, and following directed differentiation generated cell types belonging to the three germ layers. PCR analysis and sequencing confirmed the HD patient-derived iPSC line had one normal HTT allele and one with elongated CAG repeats, equivalent to ≥180Q.
Asunto(s)
Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Péptidos/metabolismo , Línea Celular , Proteína Huntingtina/genéticaRESUMEN
The extracellular signal-regulated kinase 5 (ERK5) signaling pathway is one of four conventional mitogen-activated protein (MAP) kinase pathways. Genetic perturbation of ERK5 has suggested that modulation of ERK5 activity may have therapeutic potential in cancer chemotherapy. This Miniperspective examines the evidence for ERK5 as a drug target in cancer, the structure of ERK5, and the evolution of structurally distinct chemotypes of ERK5 kinase domain inhibitors. The emerging complexities of ERK5 pharmacology are discussed, including the confounding phenomenon of paradoxical ERK5 activation by small-molecule ERK5 inhibitors. The impact of the recent development and biological evaluation of potent and selective bifunctional degraders of ERK5 and future opportunities in ERK modulation are also explored.
Asunto(s)
Sistema de Señalización de MAP Quinasas , Transducción de Señal , Transducción de Señal/fisiología , Fosforilación , Proteína Quinasa 7 Activada por Mitógenos , Procesamiento Proteico-PostraduccionalRESUMEN
Sulfamates are important functional groups in certain areas of current medicinal chemistry and drug development. Alcohols and phenols are generally converted into the corresponding primary sulfamates (ROSO(2)NH(2) and ArOSO(2)NH(2), respectively) by reaction with sulfamoyl chloride (H(2)NSO(2)Cl). The lability of the O-sulfamate group, especially to basic conditions, usually restricts this method to a later stage of a synthesis. To enable a more flexible approach to the synthesis of phenolic O-sulfamates, a protecting group strategy for sulfamates has been developed. Both sulfamate NH protons were replaced with either 4-methoxybenzyl or 2,4-dimethoxybenzyl. These N-protected sulfamates were stable to oxidising and reducing agents, as well as bases and nucleophiles, thus rendering such masked sulfamates suitable for multi-step synthesis. The protected sulfamates were synthesised by microwave heating of 1,1'-sulfonylbis(2-methyl-1H-imidazole) with a substituted phenol to give an aryl 2-methyl-1H-imidazole-1-sulfonate. This imidazole-sulfonate was N-methylated by reaction with trimethyloxonium tetrafluoroborate, which enabled subsequent displacement of 1,2-dimethylimidazole by a dibenzylamine (e.g. bis-2,4-dimethoxybenzylamine). The resulting N-diprotected, ring-substituted phenol O-sulfamates were further manipulated through reactions at the aryl substituent and finally deprotected with trifluoroacetic acid to afford a phenol O-sulfamate. The use of 2,4-dimethoxybenzyl was particularly attractive because deprotection occurred quantitatively within 2 h at room temperature with 10% trifluoroacetic acid in dichloromethane. The four key steps in the protocol described [reaction of 1,1'-sulfonylbis(2-methyl-1H-imidazole) with a phenol, methylation, displacement with a dibenzylamine and deprotection] all proceeded in very high yields.
Asunto(s)
Compuestos de Bencilo/química , Ácidos Sulfónicos/síntesis química , Estructura Molecular , Ácidos Sulfónicos/químicaRESUMEN
A-kinase anchoring proteins (AKAPs) are a family of multivalent scaffolding proteins. They engage in direct protein-protein interactions with protein kinases, kinase substrates and further signaling molecules. Each AKAP interacts with a specific set of protein interaction partners and such sets can vary between different cellular compartments and cells. Thus, AKAPs can coordinate signal transduction processes spatially and temporally in defined cellular environments. AKAP-dependent protein-protein interactions are involved in a plethora of physiological processes, including processes in the cardiovascular, nervous, and immune system. Dysregulation of AKAPs and their interactions is associated with or causes widespread diseases, for example, cardiac diseases such as heart failure. However, there are profound shortcomings in understanding functions of specific AKAP-dependent protein-protein interactions. In part, this is due to the lack of agents for specifically targeting defined protein-protein interactions. Peptidic and non-peptidic inhibitors are invaluable molecular tools for elucidating the functions of AKAP-dependent protein-protein interactions. In addition, such interaction disruptors may pave the way to new concepts for the treatment of diseases where AKAP-dependent protein-protein interactions constitute potential drug targets.Here we describe screening approaches for the identification of small molecule disruptors of AKAP-dependent protein-protein interactions. Examples include interactions of AKAP18 and protein kinase A (PKA) and of AKAP-Lbc and RhoA. We discuss a homogenous time-resolved fluorescence (HTRF) and an AlphaScreen® assay for small molecule library screening and human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) as a cell system for the characterization of identified hits.
Asunto(s)
Proteínas de Anclaje a la Quinasa A , Células Madre Pluripotentes Inducidas , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Unión Proteica , Transducción de SeñalRESUMEN
Huntington's disease (HD) is a neurodegenerative disorder caused by abnormal glutamine (Q) expansion in the huntingtin protein due to elongated CAG repeats in the gene HTT. We used non-integrative episomal plasmids to generate induced pluripotent stem cells (iPSCs) from three individuals affected by HD: CH1 (58Q), and two twin brothers CH3 (44Q) and CH4 (44Q). The iPSC lines exhibited one healthy HTT allele and one with elongated CAG repeats, as confirmed by PCR and sequencing. All iPSC lines expressed pluripotency markers, exhibited a normal karyotype, and generated cells of the three germ layers in vitro.
Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Células Madre Pluripotentes Inducidas/patología , Hermanos , Línea Celular , Proteína Huntingtina/genética , Alelos , MasculinoRESUMEN
The development of ligands for biological targets is critically dependent on the identification of sites on proteins that bind molecules with high affinity. A set of compounds, called FragLites, can identify such sites, along with the interactions required to gain affinity, by X-ray crystallography. We demonstrate the utility of FragLites in mapping the binding sites of bromodomain proteins BRD4 and ATAD2 and demonstrate that FragLite mapping is comparable to a full fragment screen in identifying ligand binding sites and key interactions. We extend the FragLite set with analogous compounds derived from amino acids (termed PepLites) that mimic the interactions of peptides. The output of the FragLite maps is shown to enable the development of ligands with leadlike potency. This work establishes the use of FragLite and PepLite screening at an early stage in ligand discovery allowing the rapid assessment of tractability of protein targets and informing downstream hit-finding.
Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Ligandos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Dominios Proteicos , Sitios de Unión , Cristalografía por Rayos X , Péptidos/metabolismo , Unión Proteica , Proteínas de Ciclo Celular/metabolismoRESUMEN
The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.
Asunto(s)
Proteína Quinasa 7 Activada por Mitógenos , Pirroles , Proliferación Celular , Pirroles/farmacologíaRESUMEN
Optimisation of the potency of a bicyclic CRF antagonist whilst retaining metabolic stability is described. A core change and incorporation of metabolically stable lipophilic groups resulted in a further potency gain without increasing metabolic liability. Pharmacological investigation of binding kinetics led to the identification of compound 25, a sub-nanomolar CRF-1 antagonist with slow dissociation kinetics and an encouraging pharmacokinetic profile.
Asunto(s)
Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Purinas/química , Purinas/metabolismo , Animales , Hormona Liberadora de Corticotropina/metabolismo , Descubrimiento de Drogas , Humanos , Cinética , Microsomas Hepáticos/metabolismo , Unión Proteica , Purinas/farmacocinética , Purinas/farmacología , RatasRESUMEN
Inhibition of murine double minute 2 (MDM2)-p53 protein-protein interaction with small molecules has been shown to reactivate p53 and inhibit tumor growth. Here, we describe rational, structure-guided, design of novel isoindolinone-based MDM2 inhibitors. MDM2 X-ray crystallography, quantum mechanics ligand-based design, and metabolite identification all contributed toward the discovery of potent in vitro and in vivo inhibitors of the MDM2-p53 interaction with representative compounds inducing cytostasis in an SJSA-1 osteosarcoma xenograft model following once-daily oral administration.
Asunto(s)
Antineoplásicos/farmacología , Isoindoles/farmacología , Osteosarcoma/tratamiento farmacológico , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Estabilidad de Medicamentos , Femenino , Humanos , Isoindoles/síntesis química , Isoindoles/metabolismo , Macaca fascicularis , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Microsomas Hepáticos/metabolismo , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
NF-κB-inducing kinase (NIK) is a key enzyme in the noncanonical NF-κB pathway, of interest in the treatment of a variety of diseases including cancer. Validation of NIK as a drug target requires potent and selective inhibitors. The protein contains a cysteine residue at position 444 in the back pocket of the active site, unique within the kinome. Analysis of existing inhibitor scaffolds and early structure-activity relationships (SARs) led to the design of C444-targeting covalent inhibitors based on alkynyl heterocycle warheads. Mass spectrometry provided proof of the covalent mechanism, and the SAR was rationalized by computational modeling. Profiling of more potent analogues in tumor cell lines with constitutively activated NIK signaling induced a weak antiproliferative effect, suggesting that kinase inhibition may have limited impact on cancer cell growth. This study shows that alkynyl heterocycles are potential cysteine traps, which may be employed where common Michael acceptors, such as acrylamides, are not tolerated.
Asunto(s)
Alquinos/farmacología , Cisteína/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Alquinos/síntesis química , Alquinos/química , Cisteína/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Quinasa de Factor Nuclear kappa BRESUMEN
Great progress has been made with protocols for the differentiation and functional application of hPSC-cardiomyocytes (hPSC-CMs) in recent years; however, the cryopreservation and recovery of hPSC-CMs still presents challenges and few reports describe in detail the protocols and general workflow. In order to facilitate cryopreservation and recovery of hPSC-CMs for a wide range of applications, we provide detailed information and step-by-step protocols. The protocols are simple and use common reagents. They are comprised of a fast dissociation, cryopreservation using standard equipment, and gentle recovery following thawing. We discuss various features of the protocols, as well as their utilization in the context of common hPSC-CM differentiation and application workflows. Finally, we compare two proprietary and two common in-house formulations of cryopreservation media used for hPSC-CMs, and despite differences in their price and composition find broadly similar recovery rates and cellular function after thawing. © 2019 The Authors. Basic Protocol 1: Dissociation and cryopreservation of hPSC-CMs Basic Protocol 2: Thawing and recovery of cryogenically frozen hPSC-CMs.
Asunto(s)
Criopreservación , Medios de Cultivo , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Línea Celular , HumanosRESUMEN
Mutations in KCNH2 can lead to long QT syndrome type 2. Variable disease manifestation observed with this channelopathy is associated with the location and type of mutation within the protein, complicating efforts to predict patient risk. Here, we demonstrated phenotypic differences in cardiomyocytes derived from isogenic human induced pluripotent stem cells (hiPSC-CMs) genetically edited to harbor mutations either within the pore or tail region of the ion channel. Electrophysiological analysis confirmed that the mutations prolonged repolarization of the hiPSC-CMs, with differences between the mutations evident in monolayer cultures. Blocking the hERG channel revealed that the pore-loop mutation conferred greater susceptibility to arrhythmic events. These findings showed that subtle phenotypic differences related to KCNH2 mutations could be captured by hiPSC-CMs under genetically matched conditions. Moreover, the results support hiPSC-CMs as strong candidates for evaluating the underlying severity of individual KCNH2 mutations in humans, which could facilitate patient risk stratification.
Asunto(s)
Canal de Potasio ERG1/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/fisiología , Arritmias Cardíacas/inducido químicamente , Línea Celular , Canal de Potasio ERG1/genética , Electrofisiología , Edición Génica , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Síndrome de QT Prolongado/genética , Modelos Biológicos , Mutación , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Piperidinas/efectos adversos , Piridinas/efectos adversosRESUMEN
Balancing potency and metabolic stability in a target which favours lipophilic ligands is a considerable challenge. Here we describe two strategies employed to achieve this balance in a series of pyrazolopyrimidine CRF antagonists: moderation of lipophilicity, and incorporation of a metabolically stable lipophilic group.