Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
SLAS Discov ; 27(6): 337-348, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35872229

RESUMEN

A central challenge of antimalarial therapy is the emergence of resistance to the components of artemisinin-based combination therapies (ACTs) and the urgent need for new drugs acting through novel mechanism of action. Over the last decade, compounds identified in phenotypic high throughput screens (HTS) have provided the starting point for six candidate drugs currently in the Medicines for Malaria Venture (MMV) clinical development portfolio. However, the published screening data which provided much of the new chemical matter for malaria drug discovery projects have been extensively mined. Here we present a new screening and selection cascade for generation of hit compounds active against the blood stage of Plasmodium falciparum. In addition, we validate our approach by testing a library of 141,786 compounds not reported earlier as being tested against malaria. The Hit Generation Library 1 (HGL1) was designed to maximise the chemical diversity and novelty of compounds with physicochemical properties associated with potential for further development. A robust HTS cascade containing orthogonal efficacy and cytotoxicity assays, including a newly developed and validated nanoluciferase-based assay was used to profile the compounds. 75 compounds (Screening Active hit rate of 0.05%) were identified meeting our stringent selection criteria of potency in drug sensitive (NF54) and drug resistant (Dd2) parasite strains (IC50 ≤ 2 µM), rapid speed of action and cell viability in HepG2 cells (IC50 ≥ 10 µM). Following further profiling, 33 compounds were identified that meet the MMV Confirmed Active profile and are high quality starting points for new antimalarial drug discovery projects.


Asunto(s)
Antimaláricos , Malaria , Antimaláricos/farmacología , Descubrimiento de Drogas , Humanos , Luciferasas , Malaria/tratamiento farmacológico , Plasmodium falciparum
2.
J Comput Aided Mol Des ; 25(7): 621-36, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21604056

RESUMEN

Fragment Based Drug Discovery (FBDD) continues to advance as an efficient and alternative screening paradigm for the identification and optimization of novel chemical matter. To enable FBDD across a wide range of pharmaceutical targets, a fragment screening library is required to be chemically diverse and synthetically expandable to enable critical decision making for chemical follow-up and assessing new target druggability. In this manuscript, the Pfizer fragment library design strategy which utilized multiple and orthogonal metrics to incorporate structure, pharmacophore and pharmacological space diversity is described. Appropriate measures of molecular complexity were also employed to maximize the probability of detection of fragment hits using a variety of biophysical and biochemical screening methods. In addition, structural integrity, purity, solubility, fragment and analog availability as well as cost were important considerations in the selection process. Preliminary analysis of primary screening results for 13 targets using NMR Saturation Transfer Difference (STD) indicates the identification of uM-mM hits and the uniqueness of hits at weak binding affinities for these targets.


Asunto(s)
Descubrimiento de Drogas , Fragmentos de Péptidos/química , Proteínas/química , Sitios de Unión , Técnicas Químicas Combinatorias/métodos , Cristalografía por Rayos X , Industria Farmacéutica , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Biblioteca de Péptidos , Conformación Proteica
3.
J Med Chem ; 64(6): 3299-3319, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33666424

RESUMEN

Class B G-protein-coupled receptors (GPCRs) remain an underexploited target for drug development. The calcitonin receptor (CTR) family is particularly challenging, as its receptors are heteromers comprising two distinct components: the calcitonin receptor-like receptor (CLR) or calcitonin receptor (CTR) together with one of three accessory proteins known as receptor activity-modifying proteins (RAMPs). CLR/RAMP1 forms a CGRP receptor, CLR/RAMP2 forms an adrenomedullin-1 (AM1) receptor, and CLR/RAMP3 forms an adrenomedullin-2 (AM2) receptor. The CTR/RAMP complexes form three distinct amylin receptors. While the selective blockade of AM2 receptors would be therapeutically valuable, inhibition of AM1 receptors would cause clinically unacceptable increased blood pressure. We report here a systematic study of structure-activity relationships that has led to the development of first-in-class AM2 receptor antagonists. These compounds exhibit therapeutically valuable properties with 1000-fold selectivity over the AM1 receptor. These results highlight the therapeutic potential of AM2 antagonists.


Asunto(s)
Receptores de Adrenomedulina/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Descubrimiento de Drogas , Femenino , Humanos , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Receptores de Adrenomedulina/metabolismo , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Relación Estructura-Actividad , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
4.
J Chem Inf Model ; 50(1): 155-69, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19919042

RESUMEN

A new computational algorithm for protein binding sites characterization and comparison has been developed, which uses a common reference framework of the projected ligand-space four-point pharmacophore fingerprints, includes cavity shape, and can be used with diverse proteins as no structural alignment is required. Protein binding sites are first described using GRID molecular interaction fields (GRID-MIFs), and the FLAP (fingerprints for ligands and proteins) method is then used to encode and compare this information. The discriminating power of the algorithm and its applicability for large-scale protein analysis was validated by analyzing various scenarios: clustering of kinase protein families in a relevant manner, predicting ligand activity across related targets, and protein-protein virtual screening. In all cases the results showed the effectiveness of the GRID-FLAP method and its potential use in applications such as identifying selectivity targets and tools/hits for new targets via the identification of other proteins with pharmacophorically similar binding sites.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Modelos Moleculares , Proteínas/metabolismo , Interfaz Usuario-Computador , Sitios de Unión , Corismato Mutasa/química , Corismato Mutasa/metabolismo , Escherichia coli/enzimología , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Fosfotransferasas/antagonistas & inhibidores , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Unión Proteica , Conformación Proteica , Proteínas/química , Saccharomyces cerevisiae/enzimología , Estaurosporina/metabolismo , Estaurosporina/farmacología
5.
ACS Pharmacol Transl Sci ; 3(4): 706-719, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32832872

RESUMEN

The hormone adrenomedullin has both physiological and pathological roles in biology. As a potent vasodilator, adrenomedullin is critically important in the regulation of blood pressure, but it also has several roles in disease, of which its actions in cancer are becoming recognized to have clinical importance. Reduced circulating adrenomedullin causes increased blood pressure but also reduces tumor progression, so drugs blocking all effects of adrenomedullin would be unacceptable clinically. However, there are two distinct receptors for adrenomedullin, each comprising the same G protein-coupled receptor (GPCR), the calcitonin receptor-like receptor (CLR), together with a different accessory protein known as a receptor activity-modifying protein (RAMP). The CLR with RAMP2 forms an adrenomedullin-1 receptor, and the CLR with RAMP3 forms an adrenomedullin-2 receptor. Recent research suggests that a selective blockade of adrenomedullin-2 receptors would be therapeutically valuable. Here we describe the design, synthesis, and characterization of potent small-molecule adrenomedullin-2 receptor antagonists with 1000-fold selectivity over the adrenomedullin-1 receptor, although retaining activity against the CGRP receptor. These molecules have clear effects on markers of pancreatic cancer progression in vitro, drug-like pharmacokinetic properties, and inhibit xenograft tumor growth and extend life in a mouse model of pancreatic cancer. Taken together, our data support the promise of a new class of anticancer therapeutics as well as improved understanding of the pharmacology of the adrenomedullin receptors and other GPCR/RAMP heteromers.

6.
Bioorg Med Chem Lett ; 19(19): 5603-6, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19717303

RESUMEN

Our efforts to reduce overall lipophilicity and increase ligand-lipophilicity efficiency (LLE) by modification of the 3- and 5-substituents of pyrazole 1, a novel non-nucleoside HIV reverse transcriptase inhibitor (NNRTI) prototype were unsuccessful. In contrast replacement of the substituted benzyl group with corresponding phenylthio or phenoxy groups resulted in marked improvements in potency, ligand efficiency (LE) and LLE.


Asunto(s)
Fármacos Anti-VIH/química , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Pirazoles/química , Inhibidores de la Transcriptasa Inversa/química , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/farmacología , Fenómenos Químicos , Diseño de Fármacos , Transcriptasa Inversa del VIH/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Pirazoles/síntesis química , Pirazoles/farmacología , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/farmacología
7.
J Chem Inf Model ; 49(10): 2202-10, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19795815

RESUMEN

The postprocessing of high-throughput screening (HTS) results is complicated by the occurrence of false positives (inactive compounds misidentified as active by the primary screen) and false negatives (active compounds misidentified as inactive by the primary screen). An activity cutoff is frequently used to select "active" compounds from HTS data; however, this approach is insensitive to both false positives and false negatives. An alternative method that can minimize the occurrence of these artifacts will increase the efficiency of hit selection and therefore lead discovery. In this work, rather than merely using the activity of a given compound, we look at the presence and absence of activity among all compounds in its "chemical space neighborhood" to give a degree of confidence in its activity. We demonstrate that this local hit rate (LHR) analysis method outperforms hit selection based on ranking by primary screen activity values across ten diverse high throughput screens, spanning both cell-based and biochemical assay formats of varying biology and robustness. On average, the local hit rate analysis method was approximately 2.3-fold and approximately 1.3-fold more effective in identifying active compounds and active chemical series, respectively, than selection based on primary activity alone. Moreover, when applied to finding false negatives, this method was 2.3-fold better than ranking by primary activity alone. In most cases, novel hit series were identified that would have otherwise been missed. Additional uses of and observations regarding this HTS analysis approach are also discussed.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas Químicas Combinatorias , Bases de Datos Factuales , Reacciones Falso Negativas , Reacciones Falso Positivas
8.
Bioorg Med Chem Lett ; 18(15): 4308-11, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18625557

RESUMEN

The structure-activity relationship and the synthesis of novel N-benzyl-N-(pyrrolidin-3-yl)carboxamides as dual serotonin (5-HT) and noradrenaline (NA) monoamine reuptake inhibitors are described. Compounds such as 18 exhibited dual 5-HT and NA reuptake inhibition, good selectivity over dopamine (DA) reuptake inhibition and drug-like physicochemical properties consistent with CNS target space. Compound 18 was selected for further preclinical evaluation.


Asunto(s)
Amidas/síntesis química , Amidas/farmacología , Norepinefrina/análisis , Pirrolidinas/síntesis química , Inhibidores Selectivos de la Recaptación de Serotonina/síntesis química , Serotonina/análisis , Amidas/química , Animales , Sistema Nervioso Central/efectos de los fármacos , Técnicas Químicas Combinatorias , Inhibidores del Citocromo P-450 CYP2D6 , Perros , Inhibidores de Captación de Dopamina/farmacología , Diseño de Fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Concentración 50 Inhibidora , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Conformación Molecular , Pirrolidinas/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/química , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Relación Estructura-Actividad
9.
Bioorg Med Chem Lett ; 18(24): 6562-7, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18945617

RESUMEN

Succinyl hydroxamates 1 and 2 are disclosed as novel series of potent and selective inhibitors of procollagen C-proteinase (PCP) which may have potential as anti-fibrotic agents. Carboxamide 7 demonstrated good PCP inhibition and had excellent selectivity over MMPs involved in wound healing. In addition, 7 was effective in a cell-based model of collagen deposition (fibroplasia model) and was very effective at penetrating human skin in vitro. Compound 7 (UK-383,367) was selected as a candidate for evaluation in clinical studies as a topically applied, dermal anti-scarring agent.


Asunto(s)
Proteína Morfogenética Ósea 1/química , Química Farmacéutica/métodos , Cicatriz Hipertrófica/tratamiento farmacológico , Cicatriz/tratamiento farmacológico , Ácidos Hidroxámicos/química , Administración Cutánea , Línea Celular Tumoral , Diseño de Fármacos , Epidermis/efectos de los fármacos , Fibrosis/patología , Humanos , Concentración 50 Inhibidora , Modelos Químicos , Conformación Molecular , Oxazoles/química
10.
PLoS One ; 13(6): e0197372, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856759

RESUMEN

A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed. In this paper we illustrate these general themes by providing detailed studies of small molecule inhibitors of the enzymatic activity of two members of the SMYD branch of the protein lysine methyltransferases, SMYD2 and SMYD3. We show that tool compounds as well as CRISPR/Cas9 fail to reproduce many of the cell proliferation findings associated with SMYD2 and SMYD3 inhibition previously obtained with RNAi based approaches and with early stage chemical probes.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Carcinogénesis/genética , N-Metiltransferasa de Histona-Lisina/genética , Células A549 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Sistemas CRISPR-Cas , Carcinogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/química , Humanos , Metilación/efectos de los fármacos , Metiltransferasas/antagonistas & inhibidores , Interferencia de ARN , Bibliotecas de Moléculas Pequeñas/farmacología
11.
ACS Med Chem Lett ; 7(2): 134-8, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26985287

RESUMEN

SMYD3 has been implicated in a range of cancers; however, until now no potent selective small molecule inhibitors have been available for target validation studies. A novel oxindole series of SMYD3 inhibitors was identified through screening of the Epizyme proprietary histone methyltransferase-biased library. Potency optimization afforded two tool compounds, sulfonamide EPZ031686 and sulfamide EPZ030456, with cellular potency at a level sufficient to probe the in vitro biology of SMYD3 inhibition. EPZ031686 shows good bioavailability following oral dosing in mice making it a suitable tool for potential in vivo target validation studies.

12.
J Mol Graph Model ; 24(3): 186-94, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16169759

RESUMEN

Modern methods in genomics and high-throughput crystallography have ensured that we have access to a large and rapidly increasing, number of X-ray structures of protein-ligand complexes. A structure-based approach to drug design aims to exploit this information, but current methods are not suited to the examination of the large numbers of complexes available. We present computational tools that analyse and display multiple protein-ligand interactions and their properties in a simplified way. We illustrate how a novel binding-mode similarity metric is able to cluster 20 ligands complexed to HIV-1 reverse transcriptase into distinct groups. The properties of each cluster are then projected onto a group surface as a series of color gradients. Analysis of these surfaces reveals fundamental similarities and differences in the binding modes of these diverse compounds. In addition, the simplicity of the surface representations facilitates the transfer of information between the crystallographer, computational chemist and the chemist. We also show how two- and three-dimensional (2- and 3-D) similarities can be combined to provide enhanced understanding of 33 factor Xa inhibitor complexes. This methodology has enabled us to identify pharmaceutically relevant relationships between ligands and their binding modes that had previously been hidden in a wealth of data.


Asunto(s)
Biología Computacional/métodos , Diseño de Fármacos , Proteínas/química , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de Serina Proteinasa/química , Programas Informáticos , Análisis por Conglomerados , Simulación por Computador , Diseño Asistido por Computadora , Cristalografía por Rayos X/métodos , Bases de Datos de Proteínas , Factor Xa/química , Inhibidores del Factor Xa , Genómica , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/química , Ligandos , Modelos Moleculares , Conformación Proteica , Proteómica , Relación Estructura-Actividad , Propiedades de Superficie
13.
J Med Chem ; 58(24): 9615-24, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26571076

RESUMEN

Visceral leishmaniasis is a severe parasitic disease that is one of the most neglected tropical diseases. Treatment options are limited, and there is an urgent need for new therapeutic agents. Following an HTS campaign and hit optimization, a novel series of amino-pyrazole ureas has been identified with potent in vitro antileishmanial activity. Furthermore, compound 26 shows high levels of in vivo efficacy (>90%) against Leishmania infantum, thus demonstrating proof of concept for this series.


Asunto(s)
Antiparasitarios/química , Leishmania donovani/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Pirazoles/química , Urea/análogos & derivados , Urea/química , Animales , Antiparasitarios/farmacocinética , Antiparasitarios/farmacología , Cricetinae , Femenino , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Mesocricetus , Microsomas/metabolismo , Pirazoles/farmacocinética , Pirazoles/farmacología , Relación Estructura-Actividad , Urea/farmacocinética , Urea/farmacología
14.
Mob Genet Elements ; 3(6): e27755, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24475369

RESUMEN

MicroRNAs (miRs) are small noncoding RNAs that typically act as regulators of gene expression by base pairing with the 3' UTR of messenger RNAs (mRNAs) and either repressing their translation or initiating degradation. As of this writing over 24,500 distinct miRs have been identified, but the functions of the vast majority of these remain undescribed. This paper represents a summary of our in depth analysis of the genomic origins of miR loci, detailing the formation of 1,213 of the 7,321 recently identified miRs and thereby bringing the total number of miR loci with defined molecular origin to 3,605. Interestingly, our analyses also identify evidence for a second, novel mechanism of miR locus generation through describing the formation of 273 miR loci from mutations to other forms of noncoding RNAs. Importantly, several independent investigations of the genomic origins of miR loci have now supported the hypothesis that miR hairpins are formed by the adjacent genomic insertion of two complementary transposable elements (TEs) into opposing strands. While our results agree that subsequent transcription over such TE interfaces leads to the formation of the majority of functional miR loci, we now also find evidence suggesting that a subset of miR loci were actually formed by an alternative mechanism-point mutations in other structurally complex, noncoding RNAs (e.g., tRNAs and snoRNAs).

15.
PLoS Negl Trop Dis ; 6(4): e1625, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22545171

RESUMEN

Inhibition of N-myristoyltransferase has been validated pre-clinically as a target for the treatment of fungal and trypanosome infections, using species-specific inhibitors. In order to identify inhibitors of protozoan NMTs, we chose to screen a diverse subset of the Pfizer corporate collection against Plasmodium falciparum and Leishmania donovani NMTs. Primary screening hits against either enzyme were tested for selectivity over both human NMT isoforms (Hs1 and Hs2) and for broad-spectrum anti-protozoan activity against the NMT from Trypanosoma brucei. Analysis of the screening results has shown that structure-activity relationships (SAR) for Leishmania NMT are divergent from all other NMTs tested, a finding not predicted by sequence similarity calculations, resulting in the identification of four novel series of Leishmania-selective NMT inhibitors. We found a strong overlap between the SARs for Plasmodium NMT and both human NMTs, suggesting that achieving an appropriate selectivity profile will be more challenging. However, we did discover two novel series with selectivity for Plasmodium NMT over the other NMT orthologues in this study, and an additional two structurally distinct series with selectivity over Leishmania NMT. We believe that release of results from this study into the public domain will accelerate the discovery of NMT inhibitors to treat malaria and leishmaniasis. Our screening initiative is another example of how a tripartite partnership involving pharmaceutical industries, academic institutions and governmental/non-governmental organisations such as Medical Research Council and Wellcome Trust can stimulate research for neglected diseases.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antiprotozoarios/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Antiprotozoarios/química , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Humanos , Leishmania donovani/efectos de los fármacos , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Infecciones por Protozoos/tratamiento farmacológico , Asociación entre el Sector Público-Privado , Relación Estructura-Actividad , Clima Tropical , Trypanosoma brucei brucei/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA