Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37631686

RESUMEN

Power distribution and battery thermal management are important technologies for improving the energy efficiency of plug-in hybrid electric vehicles (PHEVs). In response to the global optimization of integrated energy thermal management strategy (IETMS) for PHEVs, a dynamic programming algorithm based on adaptive grid optimization (AGO-DP) is proposed in this paper to improve optimization performance by reducing the optimization range of SOC and battery temperature, and adaptively adjusting the grid distribution of state variables according to the actual feasible region. The simulation results indicate that through AGO-DP optimization, the reduction ratio of the state feasible region is more than 30% under different driving conditions. Meanwhile, the algorithm can obtain better global optimal driving costs more rapidly and accurately than traditional dynamic programming algorithms (DP). The computation time is reduced by 33.29-84.67%, and the accuracy of the global optimal solution is improved by 0.94-16.85% compared to DP. The optimal control of the engine and air conditioning system is also more efficient and reasonable. Furthermore, AGO-DP is applied to explore IETMS energy-saving potential for PHEVs. It is found that the IETMS energy-saving potential range is 3.68-23.74% under various driving conditions, which increases the energy-saving potential by 0.55-3.26% compared to just doing the energy management.

2.
Math Biosci Eng ; 18(1): 1-21, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33525078

RESUMEN

Trajectory planning is one of the key technologies for autonomous driving. A* algorithm is a classical trajectory planning algorithm that has good results in the field of robot path planning. However, there are still some practical problems to be solved when the algorithm is applied to vehicles, such as the algorithm fails to consider the vehicle contours, the planned path is not smooth, and it lacks speed planning. In order to solve these problems, this paper proposes a path processing method and a path tracking method for the A* algorithm. First, the method of configuring safe redundancy space is given considering the vehicle contour, then, the path is generated based on A* algorithm and smoothed using Bessel curve, and the speed is planned based on the curvature of the path. The trajectory tracking algorithm in this paper is based on an expert system and pure tracking theory. In terms of speed tracking, an expert system for the acceleration characteristics of the vehicle is constructed and used as a priori information for speed control, and good results are obtained. In terms of path tracking, the required steering wheel angle is calculated based on pure tracking theory, and the influence factor of speed on steering is obtained from test data, based on which the steering wheel angle is corrected and the accuracy of path tracking is improved. In addition, this paper proposes a target point selection method for the pure tracking algorithm to improve the stability of vehicle directional control. Finally, a simulation analysis of the proposed method is performed. The results show that the method can improve the applicability of the A* algorithm in automated vehicle planning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA