Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445596

RESUMEN

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) performed by O-GlcNAc transferase (OGT) is a nutrient-responsive post-translational modification (PTM) via the hexosamine biosynthetic pathway (HBP). Various transcription factors (TFs) are O-GlcNAcylated, affecting their activities and significantly contributing to cellular processes ranging from survival to cellular differentiation. Given the pleiotropic functions of O-GlcNAc modification, it has been studied in various fields; however, the role of O-GlcNAcylation during osteoclast differentiation remains to be explored. Kinetic transcriptome analysis during receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation revealed that the nexus of major nutrient metabolism, HBP was critical for this process. We observed that the critical genes related to HBP activation, including Nagk, Gfpt1, and Ogt, were upregulated, while the global O-GlcNAcylation was increased concomitantly during osteoclast differentiation. The O-GlcNAcylation inhibition by the small-molecule inhibitor OSMI-1 reduced osteoclast differentiation in vitro and in vivo by disrupting the translocation of NF-κB p65 and nuclear factor of activated T cells c1 (NFATc1) into the nucleus by controlling their PTM O-GlcNAcylation. Furthermore, OSMI-1 had a synergistic effect with bone target therapy on osteoclastogenesis. Lastly, knocking down Ogt with shRNA (shOgt) mimicked OSMI-1's effect on osteoclastogenesis. Targeting O-GlcNAcylation during osteoclast differentiation may be a valuable therapeutic approach for osteoclast-activated bone diseases.


Asunto(s)
Vías Biosintéticas , Diferenciación Celular , Hexosaminas/metabolismo , Osteoclastos/citología , Procesamiento Proteico-Postraduccional , Ligando RANK/metabolismo , Acilación , Animales , Proliferación Celular , Glicosilación , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/metabolismo , Osteoclastos/metabolismo , Transducción de Señal
2.
Toxicol Appl Pharmacol ; 383: 114763, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31526816

RESUMEN

Mast cells (MCs) play an important role as effector cells that cause allergic responses in allergic diseases. For these reasons, MC is considered an attractive therapeutic target for allergic disease treatment. In this study, we investigated the inhibitory effect of WZ3146, N-[3-[5-chloro-2-[4-(4-methylpiperazin-1-yl)anilino]pyrimidin-4-yl]oxyphenyl]prop-2-enamide, and the mechanisms of its actions on the MC activation and IgE-mediated allergic response by using three types of MCs such as rat basophilic leukemia (RBL)-2H3 cells, mouse bone marrow mast cells (BMMCs), and human Laboratory of Allergic Diseases 2 (LAD2) cells. WZ3146 inhibited antigen-stimulated degranulation in a dose-dependent manner (IC50, ~ 0.35 µM for RBL-2H3 cells; ~ 0.39 µM for BMMCs; ~ 0.41 for LAD2 cells). WZ3146 also suppressed the production of histamine, tumor necrosis factor (TNF)-α and interleukin (IL)-6, which mediate various allergic responses, in a dose-dependent manner. As the mechanism of WZ3146 to inhibit MCs, it inhibited the activation of spleen tyrosine kinase (Syk) and the downstream signaling proteins of Syk such as linker for activation of T cell (LAT) and phospholipase (PL) Cγ1 in the signaling pathway of FcεRI. In addition, WZ3146 inhibited the activation of Akt, extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun N-terminal kinase (JNK). However, WZ3146 did not inhibit degranulation of MCs by thapsigargin or ionomycin, which increase calcium concentration in cytosol. Notably, WZ3146 inhibited the activity of Lyn and Fyn, but not Syk. In an following animal experiment, WZ3146 inhibited IgE-dependent passive cutaneous anaphylaxis (PCA) in a dose-dependent manner (ED50, ~ 20 mg/kg). Taken together, in this study we show that the pyrimidine derivative, WZ3146, inhibits the IgE-mediated allergic response by inhibiting Lyn and Fyn Src-family kinases, which are initially activated by antigen stimulation in MCs. Therefore, we propose that WZ3146 could be used as a new therapeutic agent for the treatment of allergic diseases.


Asunto(s)
Hipersensibilidad/metabolismo , Inmunoglobulina E/metabolismo , Mastocitos/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Pirimidinas/farmacología , Familia-src Quinasas/metabolismo , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-fyn/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fyn/inmunología , Pirimidinas/química , Ratas , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/inmunología
3.
J Dairy Sci ; 97(4): 1955-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24534507

RESUMEN

Citrus fruit (Citrus unshiu) peels were extracted with hot water and then acid-hydrolyzed using hydrochloric acid. Antimicrobial activities of acid-hydrolyzed Citrus unshiu peel extract were evaluated against pathogenic bacteria, including Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. Antilisterial effect was also determined by adding extracts at 1, 2, and 4% to whole, low-fat, and skim milk. The cell numbers of B. cereus, Staph. aureus, and L. monocytogenes cultures treated with acid-hydrolyzed extract for 12h at 35°C were reduced from about 8log cfu/mL to <1log cfu/mL. Bacillus cereus was more sensitive to acid-hydrolyzed Citrus unshiu peel extract than were the other bacteria. The addition of 4% acid-hydrolyzed Citrus unshiu extracts to all types of milk inhibited the growth of L. monocytogenes within 1d of storage at 4°C. The results indicated that Citrus unshiu peel extracts, after acid hydrolysis, effectively inhibited the growth of pathogenic bacteria. These findings indicate that acid hydrolysis of Citrus unshiu peel facilitates its use as a natural antimicrobial agent for food products.


Asunto(s)
Antibacterianos/farmacología , Bacillus cereus/efectos de los fármacos , Citrus/química , Conservantes de Alimentos/farmacología , Listeria monocytogenes/efectos de los fármacos , Leche/microbiología , Staphylococcus aureus/efectos de los fármacos , Animales , Leche/química , Extractos Vegetales/química
4.
Exp Mol Med ; 56(3): 616-629, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424193

RESUMEN

Innate lymphoid cells (ILCs) play an important role in maintaining tissue homeostasis and various inflammatory responses. ILCs are typically classified into three subsets, as is the case for T-cells. Recent studies have reported that IL-10-producing type 2 ILCs (ILC210s) have an immunoregulatory function dependent on IL-10. However, the surface markers of ILC210s and the role of ILC210s in contact hypersensitivity (CHS) are largely unknown. Our study revealed that splenic ILC210s are extensively included in PD-L1highSca-1+ ILCs and that IL-27 amplifies the development of PD-L1highSca-1+ ILCs and ILC210s. Adoptive transfer of PD-L1highSca-1+ ILCs suppressed oxazolone-induced CHS in an IL-10-dependent manner Taken together, our results demonstrate that ILC210s are critical for the control of CHS and suggest that ILC210s can be used as target cells for the treatment of CHS.


Asunto(s)
Dermatitis por Contacto , Interleucina-27 , Antígeno B7-H1 , Inmunidad Innata , Interleucina-10 , Linfocitos
5.
Int J Immunopathol Pharmacol ; 37: 3946320231202349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37706235

RESUMEN

Objectives: Our objective was to assess the effects and mechanisms of nifuratel on IgE-mediated mast cell (MC) degranulation and anaphylaxis in both in vitro and in vivo settings.Methods: The anti-allergic activity of nifuratel was evaluated in mast cell cultures and the passive cutaneous anaphylaxis (PCA) model. The effects of nifuratel on signaling pathways stimulated by antigen in mast cells were measured by immunoblotting, immunoprecipitation, in vitro protein tyrosine kinase assay, and other molecular biological methods.Results: Nifuratel reversibly inhibited antigen-induced degranulation of MCs (IC50, approximately 0.34 µM for RBL-2H3 cells; approximately 0.94 µM for BMMCs) and suppressed the secretion of inflammatory cytokines IL-4 (IC50, approximately 0.74 µM) and TNF-α (IC50, approximately 0.48 µM). Mechanism studies showed that nifuratel inhibited the phosphorylation of Syk by antigen via the inhibition of recruitment of cytosolic Syk to the É£ subunit of FcεRI, and decreased the activation of Syk downstream signaling proteins LAT, Akt, and MAPKs. Finally, nifuratel dose-dependently suppressed the IgE-mediated passive cutaneous anaphylaxis in mice (ED50, approximately 22 mg/kg).Conclusion: Our findings suggest that nifuratel inhibits pathways essential for the activation of mast cells to suppress anaphylaxis, thereby indicating that the anti-microbial drug, nifuratel, could be a potential drug candidate for IgE-mediated allergic disorders.


Asunto(s)
Anafilaxia , Antiinfecciosos , Nifuratel , Ratones , Animales , Mastocitos , Nifuratel/farmacología , Nifuratel/uso terapéutico , Reposicionamiento de Medicamentos , Inmunoglobulina E , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Degranulación de la Célula
6.
Bone ; 177: 116918, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37739296

RESUMEN

Recently improved techniques could provide snapshots of chromatin structure generated based on chromatin accessibility. Since chromatin accessibility determines transcriptional potential, it has been attempted in a variety of cell systems. However, there has been no genome-wide analysis of chromatin accessibility for the entire murine osteoclast (OC) differentiation process. We performed an Assay for Transposase-Accessible Chromatin (ATAC)-sequencing (seq) during RANKL-induced OC differentiation and found that global chromatin accessibility decreased, especially early in OC differentiation. The global histone H3K27Ac level, an active histone modification mark, was diminished during OC differentiation by western blot and histone extract experiments. Its genomic enrichment was also reduced based on publicly available H3K27Ac chromatin immunoprecipitation (ChIP)-seq data. ATAC-seq and H3K27Ac ChIP-seq data demonstrated that RANKL induced a less accessible chromatin state during OC differentiation. Restoration of reduced H3K27Ac, presumably representing accessible states upon acetate treatment, suppresses OC differentiation by provoking immune-related gene expression. Subsequential integrative analysis of ATAC-seq, RNA-seq after acetate treatment, and H3K27Ac ChIP-seq reveals that Irf8 and its downstream targets are the most vulnerable to chromatin accessibility changes and acetate supplementation. Taken together, our study generated chromatin accessibility maps during the whole OC differentiation and suggested perturbation of chromatin accessibility might be a potential therapeutic strategy for excessive OC diseases.

7.
Biomol Ther (Seoul) ; 30(6): 520-528, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36305292

RESUMEN

Mast cells are an effector cell that plays a pivotal role in type I hypersensitive immune responses. Mast cells exist in connective tissues, such as skin and mucosal tissue, and contain granules which contain bioactive substances such as histamine and heparin in cells. The granules of mast cells are secreted by antigen stimulation to cause the type I allergic hypersensitivity. In addition, stimulated by antigen, mast cells synthesize and secrete various eicosanoids and cytokines. While AT9283 is known to have anticancer effects, the therapeutic effect of AT9283 on allergic disorders is completely unknown. In this study, it was found that AT9283 reversibly inhibited antigen-IgE binding-induced degranulation in mast cells (IC50, approx. 0.58 µM) and suppressed the secretion of the inflammatory cytokines IL-4 (IC50, approx. 0.09 µM) and TNF-α (IC50, approx. 0.19 µM). For a mechanism of mast cell inhibition, while not inhibiting Syk phosphorylation, AT9283 suppressed the activation of LAT, a downstream substrate protein of Syk, in a dose-dependent manner. As expected, AT9283 also inhibited the activation of PLCγ1 and Akt, downstream signaling molecules of Syk/LAT, and MAP kinases such as JNK, Erk1/2, and P38. In an in vitro protein tyrosine kinase assay, AT9283 directly inhibited Syk activity. Next, AT9283 dose-dependently inhibited passive cutaneous anaphylaxis (PCA), an IgE-mediated allergic acute response, in mice (ED50, approx. 34 mg/kg, p.o.). These findings suggest that AT9283 has potential to use as a new drug for alleviating the symptoms of IgE-mediated allergic disorders.

8.
Bone ; 145: 115836, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33383217

RESUMEN

Osteoclasts (OCs) have been well-known involved in the exacerbation of bone-related diseases. However, the role of metabolites on osteoclastogenesis has not been well characterized. Herein, we found osteoclastogenesis was negatively regulated by α-ketoglutarate (αKG) in vitro and in vivo (C57BL/6 mouse). Kinetic transcriptome analysis revealed the upregulation of solute carrier family 7 member 11 (Slc7a11), a subunit of the cysteine/glutamate antiporter, as well as the downregulation of typical OC maker genes through αKG treatment. Given that Slc7a11 could control ROS level through glutathione import, we measured intracellular ROS, then RANKL-induced ROS production was inhibited by αKG. Notably, we highlight that αKG plays an epigenetic co-factor at the Slc7a11 promoter by demethylating repressive histone H3K9 methylation and simultaneously increasing the nuclear factor erythroid 2-related factor (Nrf2) binding, a critical transcription factor through chromatin immunoprecipitation (ChIP) analysis. Together, we suggested that αKG could be a therapeutic strategy for OC activated diseases.


Asunto(s)
Osteoclastos , Ligando RANK , Animales , Diferenciación Celular , Epigénesis Genética , Glutamina , Ácidos Cetoglutáricos , Ratones , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Ligando RANK/metabolismo
9.
Front Immunol ; 12: 752888, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069528

RESUMEN

Effector and regulatory functions of various leukocytes in allergic diseases have been well reported. Although the role of conventional natural killer (NK) cells has been established, information on its regulatory phenotype and function are very limited. Therefore, the objective of this study was to investigate the phenotype and inhibitory functions of transforming growth factor (TGF)-ß-producing regulatory NK (NKreg) subset in mice with MC903-induced atopic dermatitis (AD). Interestingly, the population of TGF-ß-producing NK cells in peripheral blood monocytes (PBMCs) was decreased in AD patients than in healthy subjects. The number of TGF-ß+ NK subsets was decreased in the spleen or cervical lymph node (cLN), but increased in ear tissues of mice with AD induced by MC903 than those of normal mice. We further observed that TGF-ß+ NK subsets were largely included in CD1dhiPD-L1hiCD27+ NK cell subset. We also found that numbers of ILC2s and TH2 cells were significantly decreased by adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets. Notably, the ratio of splenic Treg per TH2 was increased by the adoptive transfer of CD1dhiPD-L1hiCD27+ NK cells in mice. Taken together, our findings demonstrate that the TGF-ß-producing CD1dhiPD-L1hiCD27+ NK subset has a previously unrecognized role in suppressing TH2 immunity and ILC2 activation in AD mice, suggesting that the function of TGF-ß-producing NK subset is closely associated with the severity of AD in humans.


Asunto(s)
Dermatitis Atópica/inmunología , Células Asesinas Naturales/inmunología , Animales , Antígenos CD1d/inmunología , Antígeno B7-H1/inmunología , Calcitriol/efectos adversos , Calcitriol/análogos & derivados , Calcitriol/farmacología , Dermatitis Atópica/inducido químicamente , Femenino , Humanos , Ratones , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Factor de Crecimiento Transformador beta/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
10.
BMB Rep ; 54(10): 534-539, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34488930

RESUMEN

IL-10+ regulatory B (Breg) cells play a vital role in regulating the immune responses in experimental autoimmune encephalomyelitis, colitis, and contact hypersensitivity (CHS). Several stimulants such as lipopolysaccharide (LPS), CD40 ligand, and IL-21 spur the activation and maturation of IL-10+ Breg cells, while the epigenetic mechanism for the IL-10 expression remains largely unknown. It is well accepted that the histone acetylation/ deacetylation is an important mechanism that regulates the expression of IL-10. We found that entinostat, an HDAC inhibitor, stimulated the induction of IL-10+ Breg cells by LPS in vitro and the formation of IL-10+ Breg cells to suppress CHS in vivo. We further demonstrated that entinostat inhibited HDAC1 from binding to the proximal region of the IL-10 expression promoter in splenic B cells, followed by an increase in the binding of NF-κB p65, eventually enhancing the expression of IL-10 in Breg cells. [BMB Reports 2021; 54(10): 534-539].


Asunto(s)
Linfocitos B Reguladores/metabolismo , Benzamidas/farmacología , Dermatitis por Contacto/tratamiento farmacológico , Piridinas/farmacología , Acetilación , Animales , Linfocitos B Reguladores/efectos de los fármacos , Benzamidas/metabolismo , Células Cultivadas , Colitis/metabolismo , Dermatitis por Contacto/genética , Dermatitis por Contacto/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Histona Desacetilasa 1/efectos de los fármacos , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inmunidad/inmunología , Inmunidad/fisiología , Interleucina-10/inmunología , Interleucina-10/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Piridinas/metabolismo , Factor de Transcripción ReIA/metabolismo
11.
Biomol Ther (Seoul) ; 28(5): 456-464, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32268657

RESUMEN

Mast cells (MCs) are systemically distributed and secrete several allergic mediators such as histamine and leukotrienes to cause type I hypersensitivity. Dasatinib is a type of anti-cancer agent and it has also been reported to inhibit human basophils. However, dasatinib has not been reported for its inhibitory effects on MCs or type I hypersensitivity in mice. In this study, we examined the inhibitory effect of dasatinib on MCs and MC-mediated allergic response in vitro and in vivo. in vitro, dasatinib inhibited the degranulation of MCs by antigen stimulation in a dose-dependent manner (IC50, ~34 nM for RBL-2H3 cells; ~52 nM for BMMCs) without any cytotoxicity. It also suppressed the secretion of inflammatory cytokines IL-4 and TNF-α by antigen stimulation. Furthermore, dasatinib inhibited MC-mediated passive cutaneous anaphylaxis (PCA) in mice (ED50, ~29 mg/kg). Notably, dasatinib significantly suppressed the degranulation of MCs in the ear tissue. As the mechanism of its effect, dasatinib inhibited the activation of Syk and Syk-mediated downstream signaling proteins, LAT, PLCγ1, and three typical MAP kinases (Erk1/2, JNK, and p38), which are essential for the activation of MCs. Interestingly, in vitro tyrosine kinase assay, dasatinib directly inhibited the activities of Lyn and Fyn, the upstream tyrosine kinases of Syk in MCs. Taken together, dasatinib suppresses MCs and PCA in vitro and in vivo through the inhibition of Lyn and Fyn Src-family kinases. Therefore, we suggest the possibility of repositioning the anti-cancer drug dasatinib as a treatment for various MC-mediated type I hypersensitive diseases.

12.
Sci Adv ; 5(7): eaav8152, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31328158

RESUMEN

The function of regulatory immune cells in peripheral tissues is crucial to the onset and severity of various diseases. Interleukin-10 (IL-10)-producing regulatory B (IL-10+ Breg) cells are known to suppress various inflammatory diseases. However, evidence for the mechanism by which IL-10+ Breg cells are generated and maintained is still very limited. Here, we found that IL-10+ Breg cells suppress the activation of IL-13-producing type 2 innate lymphoid cells (IL-13+ ILC2s) in an IL-10-dependent manner in mice with oxazolone-induced severe contact hypersensitivity (CHS). Mast cell (MC) IL-5 was important for maintaining the population of IL-10+ Breg cells in peripheral lymphoid tissues. Overall, these results uncover a previously unknown mechanism of MCs as a type of immunoregulatory cell and elucidate the cross-talk among MCs, IL-10+ Breg cells, and IL-13+ ILC2s in CHS.


Asunto(s)
Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Dermatitis por Contacto/etiología , Dermatitis por Contacto/metabolismo , Interleucina-5/metabolismo , Mastocitos/inmunología , Mastocitos/metabolismo , Oxazolona/efectos adversos , Tolerancia Periférica , Animales , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Citocinas/metabolismo , Dermatitis por Contacto/patología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Isotipos de Inmunoglobulinas/inmunología , Masculino , Ratones , Ratones Noqueados
13.
Biomol Ther (Seoul) ; 27(3): 311-317, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30332888

RESUMEN

Mast cells are the most prominent effector cells of Type 1 hypersensitivity immune responses. CYC116 [4-(2-amino-4-methyl-1,3-thiazol-5-yl)-N-[4-(morpholin-4-yl)phenyl] pyrimidin-2-amine] is under development to be used as an anti-cancer drug, but the inhibitory effects of CYC116 on the activation of mast cells and related allergy diseases have not reported as of yet. In this study, we demonstrated, for the first time, that CYC116 inhibited the degranulation of mast cells by antigen stimulation (IC50, ~1.42 µM). CYC116 also inhibited the secretion of pro-inflammatory cytokines including TNF-α (IC50, ~1.10 µM), and IL-6 (IC50, ~1.24 µM). CYC116 inhibited the mast cell-mediated allergic responses, passive cutaneous anaphylaxis (ED50, ~22.5 mg/kg), and passive systemic anaphylaxis in a dose-dependent manner in laboratory experiments performed on mice. Specifically, CYC116 inhibited the activity of Fyn in mast cells and inhibited the activation of Syk and Syk-dependent signaling proteins including LAT, PLCγ, Akt, and MAP kinases. Our results suggest that CYC116 could be used as an alternative therapeutic medication for mast cell-mediated allergic disorders, such as atopic dermatitis and allergic rhinitis.

14.
Eur J Pharmacol ; 828: 119-125, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29588153

RESUMEN

Mast cells are critical cells that prompt various allergic response-inducing factors, contributing to allergic diseases. While used as an antibiotic for livestock, there is no study on the effect of furaltadone on allergic response. This study investigated the effect of furaltadone on mast cells and passive cutaneous anaphylaxis (PCA). Furaltadone inhibited the degranulation of mast cells stimulated by antigen (IC50, ~ 3.9 µM), and also suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-4 in a concentration dependent manner. In addition, furaltadone inhibited allergic responses in an acute allergy animal model, PCA. Further investigation on the mechanism for these inhibitory effects of furaltadone found that the activities of Lyn/Syk and Syk-dependent downstream proteins such as mitogen-activated protein (MAP) kinases were inhibited by furaltadone in mast cells. Taken together, this study demonstrates that furaltadone inhibits the activation of mast cells by antigen via the suppression of the Lyn/Syk pathway and ameliorates allergic responses in vivo.


Asunto(s)
Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Mastocitos/efectos de los fármacos , Nitrofuranos/farmacología , Oxazolidinonas/farmacología , Transducción de Señal/efectos de los fármacos , Quinasa Syk/metabolismo , Familia-src Quinasas/metabolismo , Animales , Degranulación de la Célula/efectos de los fármacos , Línea Celular , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Mastocitos/citología , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Anafilaxis Cutánea Pasiva/efectos de los fármacos
15.
Biomed Pharmacother ; 101: 201-210, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29494957

RESUMEN

An allergic reaction occurs when the immune system overreacts to harmless substance called allergen that gains access to the body. Food allergy is a hypersensitive immune reaction to food proteins and the number of patients with food allergy has recently increased. Aloe Vera is used for wellness and medicinal purposes. In particular, Aloe vera has been reported to enhance immunity. However, the effect of Aloe vera on food allergy is not yet known. In this study, we investigated the effects of processed Aloe vera gel (PAG) containing low molecular weight Aloe polysaccharide (AP) on ovalbumin (OVA)-induced food allergy in mice. Allergic symptoms, rectal temperature, and diarrhea were measured in OVA-induced food allergy mice. Other allergic parameters were also analyzed by RT-PCR, ELISA, flow cytometry, and other biochemical methods. As the results, PAG suppressed the decrease of body temperature, diarrhea, and allergic symptoms in OVA-induced food allergy mice. PAG also reduced serum concentrations of type 2 helper T cell (Th2) cytokines (Interleukin-(IL)-4, IL-5, and IL-13) as well as histamine, mast cell protease-1 (MCP-1), and immunoglobulin (Ig)E. PAG blocked the degranulation of mast cells and infiltration of eosinophils in intestine. Furthermore, PAG suppressed the population of Th2 cells in spleen and mesenteric lymph nodes. PAG also increased the production of IL-10 and population of type 1 regulatory T (Tr1) cells in mice with food allergy. Taken together, our findings suggest that PAG suppressed Th2 immune responses through, at least partially, stimulating the secretion of IL-10 in food allergy mice.


Asunto(s)
Hipersensibilidad a los Alimentos/prevención & control , Preparaciones de Plantas/química , Polisacáridos/farmacología , Células Th2/inmunología , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Hipersensibilidad a los Alimentos/inmunología , Inmunoglobulina E/inmunología , Intestinos/inmunología , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/inmunología , Polisacáridos/aislamiento & purificación , Bazo/inmunología
16.
Biochem Pharmacol ; 154: 270-277, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29777684

RESUMEN

Mast cells are critical effector cells in IgE-mediated allergic responses. The aim of this study was to investigate the anti-allergic effects of 3-[(aminocarbonyl)amino]-5-(3-fluorophenyl)-N-(3S)-3-piperidinyl-2-thiophenecarboxamide (AZD7762) in vitro and in vivo. AZD7762 inhibited the antigen-stimulated degranulation from RBL-2H3 (IC50, ∼27.9 nM) and BMMCs (IC50, ∼99.3 nM) in a dose-dependent manner. AZD7762 also inhibited the production of TNF-α and IL-4. As the mechanism of its action, AZD7762 inhibited the activation of Syk and its downstream signaling proteins, such as Linker of activated T cells (LAT), phospholipase (PL) Cγ1, Akt, and mitogen-activated protein (MAP) kinases (Erk1/2, p38, and JNK) in mast cells. In in vitro protein kinase assay, AZD7762 inhibited the activity of Lyn and Fyn kinases, which are important for the activation of Syk in mast cells. Furthermore, AZD7762 also suppressed the degranulation of LAD2 human mast cells (IC50, ∼49.9 nM) and activation of Syk in a dose-dependent manner. As observed in experiments with mast cells in vitro, AZD7762 inhibited antigen-mediated passive cutaneous anaphylaxis in mice (ED50, ∼35.8 mg/kg). Altogether, these results suggest that AZD7762 could be used as a new therapeutic agent for mast cell-mediated allergic diseases.


Asunto(s)
Antialérgicos/farmacología , Antineoplásicos/farmacología , Mastocitos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fyn/antagonistas & inhibidores , Tiofenos/farmacología , Urea/análogos & derivados , Familia-src Quinasas/antagonistas & inhibidores , Animales , Degranulación de la Célula/efectos de los fármacos , Degranulación de la Célula/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Reposicionamiento de Medicamentos/métodos , Humanos , Inmunoglobulina E/toxicidad , Masculino , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Ratas , Urea/farmacología , Familia-src Quinasas/metabolismo
17.
BMB Rep ; 50(12): 640-646, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29187284

RESUMEN

Regulatory B cells, also well-known as IL-10-producing B cells, play a role in the suppression of inflammatory responses. However, the epigenetic modulation of regulatory B cells is largely unknown. Recent studies showed that the bromodomain and extra-terminal domain (BET) protein inhibitor JQ1 controls the expression of various genes involving cell proliferation and cell cycle. However, the role of BET proteins on development of regulatory B cells is not reported. In this study, JQ1 potently suppressed IL-10 expression and secretion in murine splenic and peritoneal B cells. While bromodomaincontaining protein 4 (BRD4) was associated with NF-κB on IL-10 promoter region by LPS stimulation, JQ1 interfered the interaction of BRD4 with NF-κB on IL-10 promoter. In summary, BRD4 is essential for toll like receptor 4 (TLR4)-mediated IL-10 expression, suggesting JQ1 could be a potential candidate in regulating IL-10-producing regulatory B cells in cancer. [BMB Reports 2017; 50(12): 640-646].


Asunto(s)
Azepinas/farmacología , Linfocitos B Reguladores/efectos de los fármacos , Interleucina-10/biosíntesis , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Receptor Toll-Like 4/metabolismo , Factores de Transcripción/metabolismo , Triazoles/farmacología , Animales , Azepinas/química , Linfocitos B Reguladores/metabolismo , Proteínas de Ciclo Celular , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Triazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA