Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Infect Dis ; 10: 38, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20181272

RESUMEN

BACKGROUND: Since its first occurrence in the New York City area during 1999, West Nile virus (WNV) has spread rapidly across North America and has become a major public health concern in North America. By 2002, WNV was reported in 40 states and the District of Columbia with 4,156 human and 14,539 equine cases of infection. Mississippi had the highest human incidence rate of WNV during the 2002 epidemic in the United States. Epidemics of WNV can impose enormous impacts on local economies. Therefore, it is advantageous to predict human WNV risks for cost-effective controls of the disease and optimal allocations of limited resources. Understanding relationships between precipitation and WNV transmission is crucial for predicting the risk of the human WNV disease outbreaks under predicted global climate change scenarios. METHODS: We analyzed data on the human WNV incidences in the 82 counties of Mississippi in 2002, using standard morbidity ratio (SMR) and Bayesian hierarchical models, to determine relationships between precipitation and human WNV risks. We also entertained spatial autocorrelations of human WNV risks with conditional autocorrelative (CAR) models, implemented in WinBUGS 1.4.3. RESULTS: We observed an inverse relationship between county-level human WNV incidence risk and total annual rainfall during the previous year. Parameters representing spatial heterogeneity in the risk of human exposure to WNV improved model fit. Annual precipitation of the previous year was a predictor of spatial variation of WNV risk. CONCLUSIONS: Our results have broad implications for risk assessment of WNV and forecasting WNV outbreaks. Assessing risk of vector-born infectious diseases will require understanding of complex ecological relationships. Based on the climatologically characteristic drought occurrence in the past and on climate model predictions for climate change and potentially greater drought occurrence in the future, we suggest that the frequency and relative risk of WNV outbreaks could increase.


Asunto(s)
Brotes de Enfermedades , Lluvia , Fiebre del Nilo Occidental/epidemiología , Humanos , Mississippi/epidemiología
2.
Emerg Infect Dis ; 14(12): 1842-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19046505

RESUMEN

Raccoons (Procyon lotor) are common, widely distributed animals that frequently come into contact with wild waterfowl, agricultural operations, and humans. Serosurveys showed that raccoons are exposed to avian influenza virus. We found antibodies to a variety of influenza virus subtypes (H10N7, H4N6, H4N2, H3, and H1) with wide geographic variation in seroprevalence. Experimental infection studies showed that raccoons become infected with avian and human influenza A viruses, shed and transmit virus to virus-free animals, and seroconvert. Analyses of cellular receptors showed that raccoons have avian and human type receptors with a similar distribution as found in human respiratory tracts. The potential exists for co-infection of multiple subtypes of influenza virus with genetic reassortment and creation of novel strains of influenza virus. Experimental and field data indicate that raccoons may play an important role in influenza disease ecology and pose risks to agriculture and human health.


Asunto(s)
Animales Salvajes/virología , Anticuerpos Antivirales/sangre , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/veterinaria , Mapaches/virología , Animales , Aves/virología , Humanos , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología
3.
J Wildl Dis ; 44(2): 362-8, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18436668

RESUMEN

Swine play an important role in the disease ecology of influenza. Having cellular receptors in common with birds and humans, swine provide opportunities for mixed infections and potential for genetic reassortment between avian, human, and porcine influenza. Feral swine populations are rapidly expanding in both numbers and range and are increasingly coming into contact with waterfowl, humans, and agricultural operations. In this study, over 875 feral swine were sampled from six states across the United States for serologic evidence of exposure to influenza. In Oklahoma, Florida, and Missouri, USA, no seropositive feral swine were detected. Seropositive swine were detected in California, Mississippi, and Texas, USA. Antibody prevalences in these states were 1% in Mississippi, 5% in California, and 14.4% in Texas. All seropositive swine were exposed to H3N2 subtype, the predominant subtype currently circulating in domestic swine. The only exceptions were in San Saba County, Texas, where of the 15 seropositive samples, four were positive for H1N1 and seven for both H1N1 and H3N2. In Texas, there was large geographical and temporal variation in antibody prevalence and no obvious connection to domestic swine operations. No evidence of exposure to avian influenza in feral swine was uncovered. From these results it is apparent that influenza in feral swine poses a risk primarily to swine production operations. However, because feral swine share habitat with waterfowl, prey on and scavenge dead and dying birds, are highly mobile, and are increasingly coming into contact with humans, the potential for these animals to become infected with avian or human influenza in addition to swine influenza is a distinct possibility.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Sus scrofa/virología , Enfermedades de los Porcinos/epidemiología , Animales , Animales Salvajes/virología , Reservorios de Enfermedades/veterinaria , Femenino , Humanos , Masculino , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Estudios Seroepidemiológicos , Enfermedades de los Porcinos/transmisión , Estados Unidos/epidemiología , Zoonosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA