Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Cell Mol Med ; 27(11): 1580-1591, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37199076

RESUMEN

The ubiquitin-proteasome system (UPS) plays an important role in maintaining cellular homeostasis by degrading a multitude of key regulatory proteins. FBXW11, also known as b-TrCP2, belongs to the F-box family, which targets the proteins to be degraded by UPS. Transcription factors or proteins associated with cell cycle can be modulated by FBXW11, which may stimulate or inhibit cellular proliferation. Although FBXW11 has been investigated in embryogenesis and cancer, its expression has not been evaluated in osteogenic cells. With the aim to explore FBXW11gene expression modulation in the osteogenic lineage we performed molecular investigations in mesenchymal stem cells (MSCs) and osteogenic cells in normal and pathological conditions. In vitro experiments as well as ex vivo investigations have been performed. In particular, we explored the FBXW11 expression in normal osteogenic cells as well as in cells of cleidocranial dysplasia (CCD) patients or osteosarcoma cells. Our data showed that FBXW11 expression is modulated during osteogenesis and overexpressed in circulating MSCs and in osteogenically stimulated cells of CCD patients. In addition, FBXW11 is post-transcriptionally regulated in osteosarcoma cells leading to increased levels of beta-catenin. In conclusion, our findings show the modulation of FBXW11 in osteogenic lineage and its dysregulation in impaired osteogenic cells.


Asunto(s)
Osteogénesis , Osteosarcoma , Ubiquitina-Proteína Ligasas , Proteínas con Repetición de beta-Transducina , Humanos , Proteínas con Repetición de beta-Transducina/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Osteogénesis/genética , Osteosarcoma/genética , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685971

RESUMEN

The finding of molecules associated with aging is important for the prevention of chronic degenerative diseases and for longevity strategies. MicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and miR-146b-5p has been shown to be involved in different degenerative diseases. However, miR-146b-5p modulation has not been evaluated in mesenchymal stem cells (MSCs) commitment or during aging. Therefore, the modulation of miR-146b-5p in the commitment and differentiation of mesenchymal cells as well as during maturation and aging in zebrafish model were analyzed. In addition, circulating miR-146b-5p was evaluated in human subjects at different age ranges. Thus, the role of physical activity in the modulation of miR-146b-5p was also investigated. To achieve these aims, RT (real-time)-PCR, Western blot, cell transfections, and three-dimensional (3D) culture techniques were applied. Our findings show that miR-146b-5p expression drives MSCs to adipogenic differentiation and increases during zebrafish maturation and aging. In addition, miR-146b-5p expression is higher in females compared to males and it is associated with the aging in humans. Interestingly, we also observed that the physical activity of walking downregulates circulating miR-146b-5p levels in human females and increases the number of chondroprogenitors. In conclusion, miR-146b-5p can be considered an age-related marker and can represent a useful marker for identifying strategies, such as physical activity, aimed at counteracting the degenerative processes of aging.


Asunto(s)
MicroARNs , Pez Cebra , Animales , Femenino , Humanos , Masculino , Envejecimiento/genética , Ejercicio Físico , Longevidad , MicroARNs/genética , Pez Cebra/genética
3.
J Transl Med ; 20(1): 397, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-36058924

RESUMEN

BACKGROUND: NorthCape4000 (NC4000) is the most participated ultra-endurance cycling race. Eight healthy male Caucasian amateur cyclists were evaluated: (a) before starting the preparation period; (b) in the week preceding NC4000 (after the training period); (c) after NC4000 race, with the aim to identify the effects of ultra-cycling on body composition, aerobic capacity and biochemical parameters as well as on the differentiation of progenitor cells. METHODS: Bioelectrical impedance analysis (BIA) and dual energy x-ray absorptiometry (DEXA) assessed body composition; cardiopulmonary exercise test (CPET) evaluated aerobic capacity. Differentiation of circulating progenitor cells was evaluated by analyzing the modulation in the expression of relevant transcription factors. In addition, in vitro experiments were performed to investigate the effects of sera of NC4000 participants on adipogenesis and myogenesis. The effects of NC4000 sera on Sestrins and Sirtuin modulation and the promotion of brown adipogenesis in progenitor cells was investigated as well. Two-tailed Student's paired-test was used to perform statistical analyses. RESULTS: We observed fat mass decrease after training as well as after NC4000 performance; we also recorded that vitamin D and lipid profiles were affected by ultra-cycling. In addition, our findings demonstrated that post-NC4000 participant's pooled sera exerted a positive effect in stimulating myogenesis and in inducing brown adipogenesis in progenitor cells. CONCLUSIONS: The training program and Ultra-cycling lead to beneficial effects on body composition and biochemical lipid parameters, as well as changes in differentiation of progenitor cells, with significant increases in brown adipogenesis and in MYOD levels.


Asunto(s)
Composición Corporal , Lípidos , Absorciometría de Fotón , Impedancia Eléctrica , Humanos , Masculino
4.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35216245

RESUMEN

RUNX2 and SOX9 are two pivotal transcriptional regulators of chondrogenesis. It has been demonstrated that RUNX2 and SOX9 physically interact; RUNX2 transactivation may be inhibited by SOX9. In addition, RUNX2 exerts reciprocal inhibition on SOX9 transactivity. Epigenetic control of gene expression plays a major role in the alternative differentiation fates of stem cells; in particular, it has been reported that SOX9 can promote the expression of miRNA (miR)-204. Our aim was therefore to investigate the miR-204-5p role during chondrogenesis and to identify the relationship between this miR and the transcription factors plus downstream genes involved in chondrogenic commitment and differentiation. To evaluate the role of miR-204 in chondrogenesis, we performed in vitro transfection experiments by using Mesenchymal Stem Cells (MSCs). We also evaluated miR-204-5p expression in zebrafish models (adults and larvae). By silencing miR-204 during the early differentiation phase, we observed the upregulation of SOX9 and chondrogenic related genes compared to controls. In addition, we observed the upregulation of COL1A1 (a RUNX2 downstream gene), whereas RUNX2 expression of RUNX2 was slightly affected compared to controls. However, RUNX2 protein levels increased in miR-204-silenced cells. The positive effects of miR204 silencing on osteogenic differentiation were also observed in the intermediate phase of osteogenic differentiation. On the contrary, chondrocytes' maturation was considerably affected by miR-204 downregulation. In conclusion, our results suggest that miR-204 negatively regulates the osteochondrogenic commitment of MSCs, while it positively regulates chondrocytes' maturation.


Asunto(s)
Condrogénesis/genética , MicroARNs/genética , Animales , Diferenciación Celular/genética , Células Cultivadas , Condrocitos/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación hacia Abajo/genética , Humanos , Células Madre Mesenquimatosas/fisiología , Osteogénesis/genética , Factor de Transcripción SOX9/genética , Células Madre/fisiología , Activación Transcripcional/genética , Regulación hacia Arriba/genética , Pez Cebra
5.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34638677

RESUMEN

Cleidocranial dysplasia (CCD), a dominantly inherited skeletal disease, is characterized by a variable phenotype ranging from dental alterations to severe skeletal defects. Either de novo or inherited mutations in the RUNX2 gene have been identified in most CCD patients. Transcription factor RUNX2, the osteogenic master gene, plays a central role in the commitment of mesenchymal stem cells to osteoblast lineage. With the aim to analyse the effects of RUNX2 mutations in CCD patients, we investigated RUNX2 gene expression and the osteogenic potential of two CCD patients' cells. In addition, with the aim to better understand how RUNX2 mutations interfere with osteogenic differentiation, we performed string analyses to identify proteins interacting with RUNX2 and analysed p53 expression levels. Our findings demonstrated for the first time that, in addition to the alteration of downstream gene expression, RUNX2 mutations impair p53 expression affecting osteogenic maturation. In conclusion, the present work provides new insights into the role of RUNX2 mutations in CCD patients and suggests that an in-depth analysis of the RUNX2-associated gene network may contribute to better understand the complex molecular and phenotypic alterations in mutant subjects.


Asunto(s)
Displasia Cleidocraneal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Mutación/genética , Proteína p53 Supresora de Tumor/genética , Secuencia de Aminoácidos , Secuencia de Bases , Diferenciación Celular/genética , Niño , Femenino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Osteoblastos/fisiología , Osteogénesis/genética
6.
Cells ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474372

RESUMEN

Overexpression of the Runt-related transcription factor 2 (RUNX2) has been reported in several cancer types, and the C-X-C motif chemokine receptor 4 (CXCR4) has an important role in tumour progression. However, the interplay between CXCR4 and RUNX2 in melanoma cells remains poorly understood. In the present study, we used melanoma cells and a RUNX2 knockout (RUNX2-KO) in vitro model to assess the influence of RUNX2 on CXCR4 protein levels along with its effects on markers associated with cell invasion and autophagy. Osteotropism was assessed using a 3D microfluidic model. Moreover, we assessed the impact of CXCR4 on the cellular levels of key cellular signalling proteins involved in autophagy. We observed that melanoma cells express both RUNX2 and CXCR4. Restored RUNX2 expression in RUNX2 KO cells increased the expression levels of CXCR4 and proteins associated with the metastatic process. The protein markers of autophagy LC3 and beclin were upregulated in response to increased CXCR4 levels. The CXCR4 inhibitor WZ811 reduced osteotropism and activated the mTOR and p70-S6 cell signalling proteins. Our data indicate that the RUNX2 transcription factor promotes the expression of the CXCR4 chemokine receptor on melanoma cells, which in turn promotes autophagy, cell invasiveness, and osteotropism, through the inhibition of the mTOR signalling pathway. Our data suggest that RUNX2 promotes melanoma progression by upregulating CXCR4, and we identify the latter as a key player in melanoma-related osteotropism.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Línea Celular Tumoral , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Receptores CXCR4
7.
Cells ; 12(16)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37626898

RESUMEN

Bone-muscle crosstalk is enabled thanks to the integration of different molecular signals, and it is essential for maintaining the homeostasis of skeletal and muscle tissue. Both the skeletal system and the muscular system perform endocrine activity by producing osteokines and myokines, respectively. These cytokines play a pivotal role in facilitating bone-muscle crosstalk. Moreover, recent studies have highlighted the role of non-coding RNAs in promoting crosstalk between bone and muscle in physiological or pathological conditions. Therefore, positive stimuli or pathologies that target one of the two systems can affect the other system as well, emphasizing the reciprocal influence of bone and muscle. Lifestyle and in particular physical activity influence both the bone and the muscular apparatus by acting on the single system but also by enhancing its crosstalk. Several studies have in fact demonstrated the modulation of circulating molecular factors during physical activity. These molecules are often produced by bone or muscle and are capable of activating signaling pathways involved in bone-muscle crosstalk but also of modulating the response of other cell types. Therefore, in this review we will discuss the effects of physical activity on bone and muscle cells, with particular reference to the biomolecular mechanisms that regulate their cellular interactions.


Asunto(s)
Sistema Musculoesquelético , Músculos , Fenómenos Fisiológicos Celulares , Células Musculares , Ejercicio Físico
8.
Cells ; 12(1)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36611845

RESUMEN

Degenerative diseases affecting bone tissues and the brain represent important problems with high socio-economic impact. Certain bone diseases, such as osteoporosis, are considered risk factors for the progression of neurological disorders. Often, patients with neurodegenerative diseases have bone fractures or reduced mobility linked to osteoarthritis. The bone is a dynamic tissue involved not only in movement but also in the maintenance of mineral metabolism. Bone is also associated with the generation of both hematopoietic stem cells (HSCs), and thus the generation of the immune system, and mesenchymal stem cells (MSCs). Bone marrow is a lymphoid organ and contains MSCs and HSCs, both of which are involved in brain health via the production of cytokines with endocrine functions. Hence, it seems clear that bone is involved in the regulation of the neuronal system and vice versa. This review summarizes the recent knowledge on the interactions between the nervous system and bone and highlights the importance of the interaction between nerve and bone cells. In addition, experimental models that study the interaction between nerve and skeletal cells are discussed, and innovative models are suggested to better evaluate the molecular interactions between these two cell types.


Asunto(s)
Células de la Médula Ósea , Enfermedades Neurodegenerativas , Humanos , Diferenciación Celular/fisiología , Huesos
9.
Front Pharmacol ; 13: 890693, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35652047

RESUMEN

Flavonoids may modulate the bone formation process. Among flavonoids, fisetin is known to counteract tumor growth, osteoarthritis, and rheumatoid arthritis. In addition, fisetin prevents inflammation-induced bone loss. In order to evaluate its favorable use in osteogenesis, we assayed fisetin supplementation in both in vitro and in vivo models and gathered information on nanoparticle-mediated delivery of fisetin in vitro and in a microfluidic system. Real-time RT-PCR, Western blotting, and nanoparticle synthesis were performed to evaluate the effects of fisetin in vitro, in the zebrafish model, and in ex vivo samples. Our results demonstrated that fisetin at 2.5 µM concentration promotes bone formation in vitro and mineralization in the zebrafish model. In addition, we found that fisetin stimulates osteoblast maturation in cell cultures obtained from cleidocranial dysplasia patients. Remarkably, PLGA nanoparticles increased fisetin stability and, consequently, its stimulating effects on RUNX2 and its downstream gene SP7 expression. Therefore, our findings demonstrated the positive effects of fisetin on osteogenesis and suggest that patients affected by skeletal diseases, both of genetic and metabolic origins, may actually benefit from fisetin supplementation.

10.
Stem Cell Rev Rep ; 18(5): 1865-1874, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35316486

RESUMEN

Stem cells functions are regulated by different factors and non-conding RNAs, such as microRNA. MiRNAsplay an important role in modulating the expression of genes involved in the commitment and differentiation of progenitor cells. MiRNAs are post transcriptional regulators which may be modulated by physical exercise. MiRNAs, by regulating different signaling pathways, play an important role in myogenesis as well as in muscle activity. MiRNAs quantification may be considered for evaluating physical performance or muscle recovery. With the aim to identify specific miRNAs potentially involved in myogenesis and modulated by physical activity, we investigated miRNAs expression following physical performance in Peripheral Blood Mononuclear Cells (PBMCs) and in sera of half marathon (HM) runnners. The effect of runners sera on Myogenesis in in vitro cellular models was also explored. Therefore, we performed Microarray Analysis and Real Time PCR assays, as well as in vitro cell cultures analysis to investigate myogenic differentiation. Our data demonstrated gender-specific expression patterns of PBMC miRNAs before physical performance. In particular, miR223-3p, miR26b-5p, miR150-5p and miR15-5p expression was higher, while miR7a-5p and miR7i-5p expression was lower in females compared to males. After HM, miR152-3p, miR143-3p, miR27a-3p levels increased while miR30b-3p decreased in both females and males: circulating miRNAs mirrored these modulations. Furthermore, we also observed that the addition of post-HM participants sera to cell cultures exerted a positive effect in stimulating myogenesis. In conclusion, our data suggest that physical activity induces the modulation of myogenesis-associated miRNAs in bothfemales and males, despite the gender-associated different expression of certain miRNAs, Noteworthy, these findings might be useful for evaluating potential targets for microRNA based-therapies in diseases affecting the myogenic stem cells population.


Asunto(s)
MicroARNs , Proteína MioD/metabolismo , Ejercicio Físico , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Mioblastos
11.
Stem Cell Res Ther ; 12(1): 326, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090529

RESUMEN

BACKGROUND: Methylsulfonylmethane (MSM) is a nutraceutical compound which has been indicated to counteract osteoarthritis, a cartilage degenerative disorder. In addition, MSM has also been shown to increase osteoblast differentiation. So far, few studies have investigated MSM role in the differentiation of mesenchymal stem cells (MSCs), and no study has been performed to evaluate its overall effects on both osteogenic and chondrogenic differentiation. These two mutually regulated processes share the same progenitor cells. METHODS: Therefore, with the aim to evaluate the effects of MSM on chondrogenesis and osteogenesis, we analyzed the expression of SOX9, RUNX2, and SP7 transcription factors in vitro (mesenchymal stem cells and chondrocytes cell lines) and in vivo (zebrafish model). Real-time PCR as well Western blotting, immunofluorescence, and specific in vitro and in vivo staining have been performed. Student's paired t test was used to compare the variation between the groups. RESULTS: Our data demonstrated that MSM modulates the expression of differentiation-related genes both in vitro and in vivo. The increased SOX9 expression suggests that MSM promotes chondrogenesis in treated samples. In addition, RUNX2 expression was not particularly affected by MSM while SP7 expression increased in all MSM samples/model analyzed. As SP7 is required for the final commitment of progenitors to preosteoblasts, our data suggest a role of MSM in promoting preosteoblast formation. In addition, we observed a reduced expression of the osteoclast-surface receptor RANK in larvae and in scales as well as a reduced pERK/ERK ratio in fin and scale of MSM treated zebrafish. CONCLUSIONS: In conclusion, our study provides new insights into MSM mode of action and suggests that MSM is a useful tool to counteract skeletal degenerative diseases by targeting MSC commitment and differentiation.


Asunto(s)
Condrogénesis , Pez Cebra , Animales , Diferenciación Celular , Células Cultivadas , Condrocitos , Dimetilsulfóxido/farmacología , Humanos , Osteoblastos , Osteogénesis , Sulfonas
12.
Antioxidants (Basel) ; 10(5)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070133

RESUMEN

Sickle cell disease (SCD) is a genetic disorder of hemoglobin, leading to chronic hemolytic anemia and multiple organ damage. Among chronic organ complications, sickle cell bone disease (SBD) has a very high prevalence, resulting in long-term disability, chronic pain and fractures. Here, we evaluated the effects of ω-3 (fish oil-based, FD)-enriched diet vs. ω-6 (soybean oil-based, SD)- supplementation on murine SBD. We exposed SCD mice to recurrent hypoxia/reoxygenation (rec H/R), a consolidated model for SBD. In rec H/R SS mice, FD improves osteoblastogenesis/osteogenic activity by downregulating osteoclast activity via miR205 down-modulation and reduces both systemic and local inflammation. We also evaluated adipogenesis in both AA and SS mice fed with either SD or FD and exposed to rec H/R. FD reduced and reprogramed adipogenesis from white to brown adipocyte tissue (BAT) in bone compartments. This was supported by increased expression of uncoupling protein 1(UCP1), a BAT marker, and up-regulation of miR455, which promotes browning of white adipose tissue. Our findings provide new insights on the mechanism of action of ω-3 fatty acid supplementation on the pathogenesis of SBD and strengthen the rationale for ω-3 fatty acid dietary supplementation in SCD as a complementary therapeutic intervention.

13.
Commun Med (Lond) ; 1: 38, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35602204

RESUMEN

Background: The antibody response to SARS-CoV-2 mRNA vaccines in individuals with waning immunity generated by a previous SARS-CoV-2 infection, as well as the patterns of IgA and IgM responses in previously infected and in naïve individuals are still poorly understood. Methods: We performed a serology study in a cohort of BTN162b2 mRNA vaccine recipients who were immunologically naïve (N, n = 50) or had been previously infected with SARS-CoV-2 (P.I., n = 51) during the first (n = 25) or second (n = 26) pandemic waves in Italy, respectively. We measured IgG, IgM and IgA antibodies against the SARS-CoV-2 Spike (S) and IgG against the nucleocapsid (N) proteins, as well as the neutralizing activity of sera collected before vaccination, after the first and second dose of vaccine. Results: Most P.I. individuals from the first pandemic wave who showed declining antibody titres responded to the first vaccine dose with IgG-S and pseudovirus neutralization titres that were significantly higher than those observed in N individuals after the second vaccine dose. In all recipients, a single dose of vaccine was sufficient to induce a potent IgA response that was not associated with serum neutralization titres. We observed an unconventional pattern of IgM responses that were elicited in only half of immunologically naïve subjects even after the second vaccine dose. Conclusions: The response to a single dose of vaccine in P.I. individuals is more potent than that observed in N individuals after two doses. Vaccine-induced IgA are not associated with serum neutralization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA