Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 43(Database issue): D43-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25352549

RESUMEN

Retrotransposons account for almost half of our genome. They are mobile genetics elements-also known as jumping genes--but only the L1HS subfamily of Long Interspersed Nuclear Elements (LINEs) has retained the ability to jump autonomously in modern humans. Their mobilization in germline--but also some somatic tissues--contributes to human genetic diversity and to diseases, such as cancer. Here, we present euL1db, the European database of L1HS retrotransposon insertions in humans (available at http://euL1db.unice.fr). euL1db provides a curated and comprehensive summary of L1HS insertion polymorphisms identified in healthy or pathological human samples and published in peer-reviewed journals. A key feature of euL1db is its sample--wise organization. Hence L1HS insertion polymorphisms are connected to samples, individuals, families and clinical conditions. The current version of euL1db centralizes results obtained in 32 studies. It contains >900 samples, >140,000 sample-wise insertions and almost 9000 distinct merged insertions. euL1db will help understanding the link between L1 retrotransposon insertion polymorphisms and phenotype or disease.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Elementos de Nucleótido Esparcido Largo , Enfermedad/genética , Humanos , Fenotipo , Polimorfismo Genético
2.
Acta Physiol (Oxf) ; 230(1): e13496, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32408395

RESUMEN

AIM: Resistance exercise increases muscle mass over time. However, the early signalling events leading to muscle growth are not yet well-defined. Here, we aim to identify new signalling pathways important for muscle remodelling after exercise. METHODS: We performed a phosphoproteomics screen after a single bout of exercise in mice. As an exercise model we used unilateral electrical stimulation in vivo and treadmill running. We analysed muscle biopsies from human subjects to verify if our findings in murine muscle also translate to exercise in humans. RESULTS: We identified a new phosphorylation site on Myocardin-Related Transcription Factor B (MRTF-B), a co-activator of serum response factor (SRF). Phosphorylation of MRTF-B is required for its nuclear translocation after exercise and is accompanied by the transcription of the SRF target gene Fos. In addition, high-intensity exercise also remodels chromatin at specific SRF target gene loci through the phosphorylation of histone 3 on serine 10 in myonuclei of both mice and humans. Ablation of the MAP kinase member MSK1/2 is sufficient to prevent this histone phosphorylation, reduce induction of SRF-target genes, and prevent increases in protein synthesis after exercise. CONCLUSION: Our results identify a new exercise signalling fingerprint in vivo, instrumental for exercise-induced protein synthesis and potentially muscle growth.


Asunto(s)
Cromatina/química , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Factor de Respuesta Sérica , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Ejercicio Físico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Biosíntesis de Proteínas , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA